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 Summary  

Atlantic salmon (Salmo salar L.) repeat-spawners might play an important role in population 

persistence by increasing both total recruitment and long-term stability of a population. This 

is because repeat spawners return at larger sizes and with greater fecundity than first time 

spawners, and the large majority of repeat-spawners are females. Nevertheless, little 

knowledge exists of this potentially significant population sub-unit. 

We conducted a four-year field study in the River Alta, Northern Norway, using acoustic and 

radio telemetry combined with scale sample analysis and mark recapture, with the aim of 1) 

assessing the survival and migration patterns after spawning, 2) assessing the post and repeat-

spawner mortality in the fisheries, and 3) quantifying the returning rate of post spawning 

females. These results were further used in combination with historical catch-records from 

both sea and in-river fisheries to 4) model the repeat spawning rate in the female population 

and the significance of repeat spawning for egg production during fluctuating maiden runs.  

We found that 1) survival after spawning and early marine migration was high (63-80% and 

96%, respectively), and that the post-spawners (kelts) in best condition waited longest in the 

river before migrating. 2) The fisheries mortality was low (4%) when exiting the river and 

fjord, and moderate (11 %) when re-entering the fjord and river upon return. 3) Female 

survival until spawning was on average 32 %, and 4) according to model simulations, on 

average 20% of the female population consisted of repeat-spawners, which might have an 

important stabilizing function reducing fluctuations in a population by contributing an 

average of 27% (2%-59%) of all the eggs spawned in the river.  

We conclude that the post-spawners have high survival both in the river and the sea despite 

their weakened condition after spawning and overwintering in the river, and that repeat-

spawners might contribute significantly to Atlantic salmon production. Their numeric and 

genetic contribution might be especially important during declining and fluctuating 

populations as a buffer against poor maiden recruitment years. Therefore post- and repeat-

spawners are worthy of special conservational attention and management measures. 
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1. Introduction  

 

What is this study about? 

 

The Atlantic salmon (Salmo salar L.) is a fish species native to watersheds in the temperate 

and subarctic regions of the North Atlantic Ocean (Thorstad et al. 2011). It is an iconographic 

species with vast historic, economic and socio-cultural significance, and therefore also one of 

the most researched fish species in the world. One of the many fascinating characteristics of 

the Atlantic salmon is that it displays considerable phenotypic plasticity1 and variability in 

life history characteristics (Thorstad et al. 2011, Fig 1). This PhD thesis is dedicated to 

studying a certain, relatively little researched life stage of Atlantic salmon – the post 

spawning stage (Fig 1, boxes and arrows marked in red). The overall aim of the study has 

been to study the migration patterns and identify hotspots of mortality of post-spawners and 

to quantify the significance of repeat spawning to the salmon population of River Alta, 

Northern Norway, in order to assess management and conservation issues. 
 

 

 

 

 

 

 

1 The ability of an organism to change its phenotype2 in response to changes in the environment. 

2 A phenotype is any observable characteristic or trait of an organism: such as its morphology, development, 
biochemical or physiological properties, behaviour, and products of behaviour (such as a salmon's nest). 
Phenotypes result from the expression of an organism's genes as well as the influence of environmental factors 
and the interactions between the two. 
 
  



Fig. 1. Altantic salmon anadromous life cycle, the post spawning stage is marked with red 

(modified from Jobling et al. (2010), Fig. 12.8).

3 Salmon spawning the first time: Maiden salmon. Synonyms: virgin salmon.

4 Kelt: an anadromous salmon that has completed spawning but has not yet returned to the sea. Synonyms: post-
spawner, black salmon, mended salmon.

5 Repeat-spawner: a kelt becomes a repeat-spawner upon return. Synonyms: previous spawner, multiple 
spawner. 
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Background for the study 

 

One of the most fascinating features of Atlantic salmon life history is its migrations between 

the fresh water and marine environment. This type of migration pattern is called diadromy 

(Lucas and Baras 2001) and is found in only 1% of all the 27 977 known fish species 

(Helfman et al. 2009). Diadromy can be divided into anadromy, in which adult fish migrate 

from the sea to spawn in fresh water, catadromy, in which adult fish migrate from fresh water 

to spawn in the sea, and amphidromy, where fish migrate between fresh water and the sea (in 

both directions), but not for the purpose of breeding (McDowall 1987, 1997). Most Atlantic 

salmon populations are anadromous (Fig 1), although some populations complete their life 

cycle in fresh water (Thorstad et al. 2011). A diadromous life history will evolve through 

natural selection only when the migrations provide a gain to individual fitness (lifetime 

reproductive success) that exceeds the costs (Gross, 1987, 1988). In the case of Atlantic 

salmon the gains are better feeding conditions at sea compared to fresh water, resulting in 

better growth and a larger size (Rikardsen and Dempson 2011), and therefore higher 

fecundity upon return to the river. The costs include the energy invested in swimming 

considerable distances and an increased mortality risk owing to predation and diseases during 

migration (Gross et al. 1988; Jonsson and Jonsson 1993). From a management and 

conservation point of view these migrations present a significant challenge; the salmon 

moves across large areas without any respect for different jurisdictions and experiences a 

multitude of environments along its path.  

 

Another captivating feature of salmon is their ability to home (i.e. to return to their natal river 

to spawn, see Quinn 1993), a behaviour responsible for the development of river-specific 

populations that differ both ecologically and genetically (Ståhl 1981, 1983; Hindar et al. 

1991; Klemetsen et al. 2003; Verspoor et al. 2005). Not only do the salmon home with high 

precision to their natal river but also to the part of the river where they hatched, as ecological 

and genetic differences among subpopulations within rivers are also documented (Verspoor 

et al. 2007). The ability to home forms and maintains local adaptations and allows for 

variation in life history strategies to develop in different rivers (Schaffer and Elson 1975, 
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Taylor 1991, Verspoor et al. 2005), and may be crucial for the buffering capacity of the 

population in changing environmental conditions (Schindler et al. 2010).  

 

One of the most important life-history choices for Atlantic salmon individuals is deciding 

when to spawn and how many times to spawn (see Box 1). Atlantic salmon have been 

documented to spawn up to six (Ducharme, 1969) or even seven times (ICES, 2004) during a 

life time. However, post spawning mortality is generally considered high and most 

individuals spawn only once or twice (Jonsson et al. 1991a, Heggberget 1989; Shearer 1992, 

Klemetsen et al. 2003). Atlantic salmon typically enter coastal home waters and rivers from 

the sea several months prior to spawning, and the timing of the run (return spawning 

migration into the river) is highly variable both within and among populations (Klemetsen et 

al. 2003). During the homing and upstream migration periods, Atlantic salmon do not usually 

feed (Johansen et al. 2011), and energy reserves are used to fuel body maintenance, gonad 

growth, and migration. The total energy loss due to migration and spawning may amount to 

more than 60% of the body reserves present prior to upstream migration (Jonsson et al. 

1997). The energy loss explains why many salmon die shortly after spawning. However, a 

part of the population might survive the spawning event, and these survivors, commonly 

called ‘kelts’, migrate to sea either shortly after spawning, or during the following spring or 

early summer (Jonsson et al. 1990). This sea feeding migration of kelts to replenish energy 

levels necessary for additional spawning migrations is a key component to the repeat 

spawning strategy of Atlantic salmon.  

 

Even though Atlantic salmon can survive spawning and spawn several times, little is known 

about survival after spawning and the repeat spawning rate (Anon. 2009, Thorstad et al. 

2011). It almost seems like the Atlantic salmon management and research community has 

treated return spawners as an oddity, not worth serious attention. Kelts are often ignored in 

management plans, for instance when constructing bypasses to hydropower plants or 

implementing fishing regulations (Wertheimer and Evans 2005). Perhaps of equal concern is 

that repeat-spawners are usually not accounted for when estimating recruitment to spawning 
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stocks (Hindar et al. 2011). This neglect of the post spawning stage of salmon is surprising, 

as repeat-spawners usually have a much larger body size than first time spawners, and large 

salmon are also considered valuable both for commercial and recreational fisheries. From the 

manager’s point of view, repeat-spawners contribute with increased recruitment and might 

add stability to the population. This is because repeat-spawners can contribute 

proportionately more to the production of a new generation than their numbers would 

indicate due to their larger size that leads to higher fecundity (Niemelä et al. 2006). In 

addition, the large majority of repeat-spawners are females (Mills 1989; Erkinaro et al. 1997; 

Niemelä et al. 2000, Shearer 1992), which are usually the limiting factor for production. 

Therefore, repeat-spawners can be especially important to Atlantic salmon populations at 

times when survival to first spawning (recruitment) is low (Niemelä et al. 2006).  

 

In consequence, even though typically less than 10% of Atlantic salmon are believed to 

return to breed again (Fleming and Reynolds 2004), the role of repeat-spawners might be 

increasingly important as Atlantic salmon populations are in decline through most of their 

native distribution range (Hansen et al. 2008, ICES 2008, Anon 2010 ). The reasons for the 

declines are believed to include many anthropogenic factors working in concert, in addition 

to reduced survival and growth at sea (ICES 2008, Anon 2010, Jensen et al. 2011). 

Anthropogenic factors include a range of impacts, such as freshwater habitat degradation in 

the form of hydropower development, physical impacts from land use and pollution, 

overexploitation (both at sea and in rivers), transfer of parasites and diseases both in the river 

and the sea, and genetic and ecological impacts from escaped farmed salmon. To mitigate the 

observed decline, a wide range of mitigating and compensating measures have been applied, 

such as stocking, liming, eradicating parasites, reducing salmon fisheries, and restoring river 

habitats. Nevertheless, the populations have not recovered, and many are in a dire state (Anon 

2009, Hindar et al. 2011). The complex and highly worrying situation for Atlantic salmon 

brings us back to repeat-spawners, as they might not be as susceptible as first time migrants 

to variability in the marine environment, for instance due to different dietary requirements 

(Rikardsen and Dempson 2011). Therefore, repeat-spawners might be important in mitigating 

the effects of variation in post-smolt marine survival. Indeed, there are indications that 
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repeat-spawners might be increasing in numbers and in importance (Chaput et al. 2001, 

Dempson and O’Connell 2004, Anon 2010). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, repeat spawning might be important in maintaining the Atlantic salmon 

populations, but little knowledge exists of this particular life-stage. There are considerable 

knowledge gaps regarding the post spawning survival, migration patterns in and out of the 

river, and mortality hot spots. In addition, there is little information available on the variation 

in life-history strategies of repeat-spawners, their weight gain during sea-migration, their life-

time reproductive success, and most importantly, there are few quantified estimates on the 

contribution of repeat-spawners to stock recruitment and stability. More knowledge on all the 

issues mentioned above could be important in order to mitigate the negative trend observed in 

the recruitment and production of Atlantic salmon. Consequently, this thesis aims to answer 

the following questions given below and in Fig. 2:  

Box 1. Theoretical background for the study; life history theory 

 
Life history theory posits that the schedule and duration of key events in an organism's lifetime 
are shaped by natural selection to produce the largest possible number of surviving offspring. 
Life history characteristics are traits and can be imagined as various investments in growth, 
reproduction, and survival. A fundamental assumption of life-history theory is that there is a 
continuous trade-off between these traits (Roff 1992, Stearns 1992).  
 
An example of a trade-off is the choice between reproducing once (semelparity) or several times 
(iteroparity). For iteroparous reproduction to prevail, the current investment in relation to the 
predicted future investments ought to be low. Such a reproductive scheme is found under 
conditions of high P/Y (where P is parental survival rate and Y is juvenile survival rate). In other 
words, iteroparous species have low adult mortality relative to juvenile mortality and therefore 
spread the risk of reproduction both temporally and spatially, whereas semelparous species have 
high expected adult mortality, making it more economical to put all reproductive effort into the 
first and final reproductive episode. Fishes in the subfamily Salmoninae exhibit both iteroparity 
(Salmo, Salvelinus) and semelparity (most species of Pacific salmon Oncorhynchus; the two 
exceptions are the more ancestral species, Steelhead Oncorhynchus mykiss and Cutthroat trout 
Oncorhynchus clarki). Semelparity is believed to have evolved from iteroparity, and once a 
semelparous strategy has evolved there seems to be no going back to iteroparity (see Crespi and 
Teo 2002).!
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1) How many salmon survive spawning and overwintering in the river? (paper III) 

2) Who survives the spawning and overwintering in the river? (paper III) 

3) What steers the kelt out-migration? (paper III) 

4) What is the mortality of kelts during the out-migration? (paper I and II ) 

5) What are the maturation schedules of repeat-spawners?(paper IV) 

6) How large is the repeat-spawner weight gain at sea? (paper IV) 

7) How many repeat-spawners return from the sea? (paper IV) 

8) What is the repeat-spawner fisheries mortality during in-migration?  (paper IV) 

9) How much do repeat-spawners contribute to the production of eggs in the river? 

(paper IV) 

 
 

Fig. 2. Research objectives of the thesis. The Roman numerals refer to the original papers 

included in the thesis.  
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2. Material and methods 

2.1. Study area  

 

All the studies included in this thesis were conducted in the years 2007-2010 in the sub-

Arctic River Alta  (70°N 23°E) , which is one of the most productive Atlantic salmon rivers 

in the world, relative to its size (Eikeset et al. 2001, Anon 2010, Hindar et al. 2011). The 

River Alta is especially renowned for the size of its salmon, and is therefore one of the top 

sports fishing destinations in the world. The River Alta has registered in-river catches 

between 6 and 32 tonnes (records from 1974 to 2008, Halttunen et al. 2009), and additional 

4-45 tonnes are caught in the commercial fisheries in the fjord before the salmon reach the 

river (Halttunen et al. unpublished data). Despite the heavy harvest, the population is 

considered sustainable (Anon 2009). The healthiness of the population is often attributed to 

the strong management regime in the river, driven by the local river-owners (Alta laksefiskeri 

interessentskap; ALI). There is a good reason for strong management, as the bustling angling 

based business is economically important for the community. The locals love their river 

vehemently and the European aristocracy and the international plutocracy are known to 

frequent the river. A disputed hydro-power dam was built in the upper reaches in 1986 above 

the stretch accessible for anadromous fish. For maps, details on geography, hydrography and 

demographics see papers (I-IV). 

 

The River Alta is an ideal study site, as it is a simple and a relatively short system (46 km up 

to the dam) with only one tributary (River Eiby). The river is well studied (long time series of 

diverse data due to hydro-power funded research), the local managers have a good system for 

collecting catch statistics from the anglers since 1974, and both the managers and the locals 

are in general well-disposed to co-operation with researchers. 
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2.2. Methodological approach 

 

All the studies included in the thesis are empirical, observational and conducted entirely in 

the field over a 4-year period. All the studies are based on telemetry methods that allow 

following the movements of tagged individual fish without the need of recapture. Movements 

of tagged individuals can be recorded by following signals from the attached transmitters 

using a portable receiver, or by installing fixed automatic listening stations that record tagged 

fish within the range of the station. The two telemetry methods used to study survival and 

behaviour in this thesis were: 1) acoustic telemetry (papers I- IV) and 2) radio telemetry 

(paper III). In addition we used mark-recapture methods to assess exploitation rates in the 

fisheries (papers I and II) and scale analysis to assess wild origin and life history parameters 

(e.g. age, repeat spawning) (papers II – IV, see Fig. 3).  

 

2.2.1. Telemetry methods 

#

The main benefits of telemetry are that it is a reliable method for quantitative estimates on 

behaviour, and that it enables observing fish in situ. Telemetry eliminates the issues 

associated with holding fish in captivity (crowding, water quality, abrasion, lack of predators, 

stress due to an unfamiliar environment, limited movement behaviour, reviewed by 

Donaldson et al. 2008), which often confound the results of behavioural and mortality 

studies. Therefore, the field-based approach makes the observational results more realistic 

and representative. 

Using telemetry in a river on an economically-important fish species with a predictable 

migration pattern entailed several advantages; for example, there was no uncontrolled 

emigration from the study area (all fish had to pass the arrays when exiting the river), there 

was a reliable way to determine the viability of a fish (registrations at the arrays in the fjord 

when exiting or entering and registrations of movement within river), the harvesting was 

controlled and well-documented by local managers, and finally, reference groups could be 

established by tagging fish at different life-stages (paper II). 
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A major drawback in telemetry studies is the cost of the tags and the infrastructure. In 

addition, it may be difficult and expensive to catch a large number of fish for tagging, and the 

tracking effort may be challenging and time-consuming when following a large number of 

individuals. This often results in small sample sizes, which further results in poor power of 

analysis and therefore insecurity in drawing inferences. 

Furthermore, it is important to use transmitters and catching, handling and tagging methods 

with minimal impacts on the fish. This is important not only to conform to international 

ethical requirements, but also to minimize the impact on fish behaviour and survival, and 

therefore ultimately the conclusions of the study (reviewed by Jepsen et al. 2002, 2005, 

Bridger and Booth 2003).  

In accordance to the 3R’s (Reduce, Replace and Refine) of the ethical guidelines for 

conducting experiments on animals (Russell and Burch 1959) that have the aim of 

minimizing the number of animals used in experiments and the effect on experimental 

animals, we have used the state-of- the-art tagging techniques and the same tagged fish to 

answer several different research questions (papers I-IV).  

 

2.2.1.1. Acoustic telemetry 

!

Acoustic telemetry relies on the propagation of sound waves through water. Acoustic tags are 

electronic devices that send out a unique acoustic code, as well as environmental data if 

required, for example the depth or temperature the fish experiences. As the tagged fish passes 

near a submerged hydrophone receiver, the transmitted code is detected and recorded by the 

receiver along with the date and time of the detection. Acoustic telemetry works well both in 

fresh and sea water, but the range varies a lot with wind and wave action and debris in the 

water, i.e. everything that can create obstacles for the movement of the pressure waves sound 

consists of (Thorstad et al. 2000b).  

 

We have used acoustic telemetry to study small and large scale migration patterns in the river 

and the fjord (e.g. migration timing, migratory speed, swimming depth, horizontal 
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distribution in the fjord, marine survival and the inter-spawning interval). See papers (I-IV) 

for details on tags, tagging and tracking procedures.  

 

2.2.1.2. Radio telemetry 

#

Radio telemetry relies on the propagation of radio waves through water. Radio tags are 

electronic devices that transmit on a given frequency, which may transmit along with the 

identity, for example the depth or temperature the fish experiences. When the tagged fish is 

within the detection range of a receiver, the transmitted frequency is detected along with the 

date and time of the detection. Radio telemetry works only in fresh water, as the conductivity 

of sea water reduces the range to the effect that it becomes unusable at sea. In fresh water the 

range is very good - up to several kilometres - depending on the depth of the tag and the 

surrounding topography. In addition, radio telemetry works through ice and snow, which is a 

considerable asset when working throughout the winter in the sub-arctic. Radio transmitters 

are advantageous for use in rivers, because acoustic transmitters often have a reduced range 

in turbulent and flowing water (Thorstad et al. 2000b). 

We used radio telemetry to assess in-river survival and migratory patterns. See paper III for 

details on tags and tagging and tracking procedure.  
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2.2.2. Mark and recapture 

 

Mark and recapture is commonly used in ecology to evaluate hypotheses about behaviour 

(Block et al. 1998), fishing mortality (Hearn et al. 1998, Latour et al. 2003), natural mortality 

(Hoenig et al. 1998, Gaertner and Hallier 2003) and the temporal and spatial distribution of 

the target species (Dupuis 1995; Block et al. 2002). However, in most cases it has proven 

difficult to use these data in stock assessment due to the multiplicative effects of exploitation 

rate, natural mortality, tag-induced mortality, tag expulsion, tag failure and tag reporting rate, 

and therefore the data remain highly uncertain.  

In this thesis, mark recapture was used in papers I and II to assess the capture rate of kelts in 

the fisheries, as a complementing material for the acoustically tagged kelts. This was done to 

increase the sample size that would otherwise have been too low to provide reliable 

estimates. In addition, all the acoustically tagged kelts were also tagged externally with 

modified Carlin tags with contact and reward information for reporting recaptures, and can 

therefore be considered as a part of a mark-recapture study as well. As the fishermen in both 

the river and the fjord were informed about the project by personal letters and the reward for 

reporting recaptures was high, we deem the reporting rate relatively reliable. Due to the 

reported recaptures we were also able to estimate tag failure and tag expulsion rates.  

 

2.2.3. Scale analysis 

 

Scale analysis is a method commonly used in the study of fish, as it can give a lot of 

information on the age and growth of the fish (Bagenal 1974). This is based on different 

growth patterns in the summer (fast growth period) and winter (slow growth period). The 

slow growth in winter results in closely spaced growth marks on the scale that can be seen as 

a darker area, and used to assess the age of the fish (Van Oosten 1957). Spawning leaves also 

a noticeable mark on the scale, and therefore scale analysis is a valuable method in assessing 

the life-history of a given individual (White and Medcof 1968, Ducharme 1969). It is also a 

non-invasive method especially suitable to be combined with behavioural studies with 
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telemetry. However, scale analysis is a subjective method, and requires a certain degree of 

expertise. Therefore, scales read by different analysts might not be directly comparable. The 

scales used in all the studies included in this thesis were analysed by the same experienced 

person (papers II-IV).  

 

 

 
Fig. 3. Main methods used in the four different studies included in this thesis. 
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2.3. The assumptions behind the study design 

 

The study design relies on three assumptions:  

1) We have tagged a representative group of fish.  

The sampling methods used in this study (bagnets and angling) were chosen for their 

gentleness, in order to avoid abrasion, scale loss and other wounds from gillnets (Mäkinen et 

al. 2000, Jokikokko 2002, Rivinoja 2005). Nevertheless, both sampling methods have their 

limitations regarding random sampling – which is a crucial element in drawing statistical 

inferences of the study population. The assumption of random sampling is relatively robust 

regarding the bagnet-based sampling in the fjord, but due to the size-selectivity of the nets, 

one sea winter (1SW) fish were under-represented in the study material. Therefore additional 

sampling by angling was arranged in the river for the smallest size-class (paper III). The fish 

tagged from the bag nets spread out in the river in a random manner (Jensen et al. 2010), and 

therefore all the data-points from individual returning salmon can be considered independent 

from each other.    

Randomly sampling the whole river by angling was impossible, as we were logistically 

restrained to sampling at accessible fishing locations. Therefore the sampling design was 

haphazard rather than random. As fish were caught only in seven different locations, care was 

taken to assess the independence of the data points in analysis. However, sampling by angling 

might introduce an unknown element in the study material; when angling we only sampled 

fish that took the bait, and since we do not know what affects this behaviour we cannot claim 

for sure to have tagged a representative group of the kelts in the river. However, our sample 

sizes were quite large and most of the biological characteristics were normally distributed. 

Therefore, we have confidence that our sampling design was relatively robust. In addition, we 

have compared the behaviour of the two groups sampled with different methods against each 

other and found no significant differences (paper III).  
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2) We do not affect the survival, behaviour or growth with our method.  

It is a well-known fact that handling and tagging of the fish may influence its behaviour and 

swimming performance (Brown et al. 2006), growth, and survival (Rikardsen 2000). In 

addition, external tagging might increase the risk of being captured in fisheries (Rikardsen 

and Thorstad 2006). However, most of these effects can be mitigated by handling the fish as 

gently as possible, and by choice of tagging timing, method and tag. Consequently, we have 

caught the fish as early as possible to reduce tagging effects in behaviour during the time of 

interest, we have tagged with gentle methods as mentioned above and minimized their time in 

captivity, we have tagged while the fish were under anaesthesia and have used small tags 

(~0.001% of bodyweight). We feel confident that we have done all in our power to minimize 

the handling and tagging effect. 

The returning salmon were tagged externally since exertions during migrations may open up 

surgical incision during upstream migrations through rough river sections (Thorstad et al. 

unpublished data). In addition, external attachment of tags is a quick tagging method, which 

reduces handling stress. Usual problems related to external tags are effects on swimming 

performance, fouling and tag loss due to mechanical stress (e.g. due to entanglement in 

vegetation, shedding of tags in waterfalls and fish ladders) (Johnsen et al. 1998, Rivinoja et 

al. 2001). The same type of tag used in this study (paper III) did not affect the swimming 

performance of smaller salmon in a previous study by Thorstad et al. (2000a), no fouling of 

tags was observed on recaptured fish, and only few tag-losses were reported (there are no fish 

ladders in the study river and only one small waterfall in the upper reach of the river). 

The kelts were tagged internally with acoustic tags in order to achieve long term retention of 

the tags. Nevertheless, we observed 20% tag expulsion upon return after one or two years at 

sea throughout the study (paper IV). Immediate recovery of tagged kelts was rapid, as the 

kelts were operated in cold water and the post spawning life-stage tolerates handling quite 

well (Brobbel et al. 1996 papers I and II). The long term effect on survival is difficult to 

assess, but we have assessed it indirectly by comparing the growth rate of tagged fish against 

untagged individuals in the same age-classes from the in-river catch statistics, and found no 

significant differences, indicating that carrying the tag does not affect the feeding capacity.  
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3) The tagged fish home back to the same river.  

 

Salmon in general show high fidelity to their natal rivers (Quinn 1993, Jonsson et al. 2003), 

and Hansen and Jonsson (1994) verified experimentally that replaced post spawning Atlantic 

salmon returned to their natal river which they left as smolts. As no tags were reported 

recovered in neighbouring rivers, we have confidence that our straying rates are minimal.   
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3. Results and discussion 

 

This thesis succeeded in answering the questions posed in the beginning of the study;   

 

1) How many salmon survive spawning and overwintering in the river? (paper III) 

 

The minimum post spawning survival rate in River Alta was high (63-80%) and consistent 

with the estimate by Thorstad et al. (2003) for the same river (80%). The other few estimates 

that are available report kelt survival in the wild in the large range of 30-80 % (Jonsson et al. 

1990, 1991a) indicating a great spatial and temporal variability in survival rates.   

 

The post spawning survival is obviously the key component in an iteroparous reproductive 

strategy, but the factors affecting the survival are most likely numerous and complex. For 

example, the morphology, hydrography and latitude of the river might play important parts in 

explaining post spawning survival patterns. Physical constraints, like the lack of suitable 

pools, lack of adequate water levels through winter, and sub-optimal ice-conditions might 

decrease overwintering survival. On the other hand, increasing latitudes often equal lower 

temperatures, and lower temperatures render migratory and spawning energetics less costly. 

Therefore, more energy is left for survival. In addition, in higher latitudes freshwater 

environments become more unpredictable (for example large variation in the timing and 

duration of the spring flood from year to year), and this can lead to strong inter-annual 

variations in the survival of eggs and larvae (Leggett and Carscadden 1978, Glebe and 

Leggett 1981). This, according to life-history theory, should select for a temporal spread of 

reproductive risk and therefore favor iteroparity (Stearns 1992, Roff 1992). However, this 

still remains to be proven for Atlantic salmon, and the relationship between the post-

spawning survival of kelts and environmental factors needs to be assessed with long-term 

data from heterogeneous rivers at varying latitudes.  

Abiotic factors aside, the biotic factors play an important role too, and they are often 

dependent on abiotic factors (see Fig. 4). For example, the general condition of the fish when 

entering the river might directly affect post spawning fate (paper III), and the condition of 

salmon when entering the river is dependent on feeding conditions it has experienced at sea, 

which in turn are dependent on variations in climate, for example temperature (Rikardsen and 
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Dempson 2011). Climate might also affect the temperatures in the spawning river and 

increase energy expenditure during up-stream migration and spawning, susceptibility to 

diseases and fresh water parasites (for example fungi Saprolegnia and gill-maggots 

Salmincola salmonea L.), and in consequence elevate mortality. High densities of 

conspecifics may also increase energy expenditures via higher competition among individuals 

during spawning, and therefore reduce post-spawning survival. Finally, predation and harvest 

in the river obviously affect survival rates directly, and may in addition target specific size-

classes. Taken into consideration all the known and unknown possible factors, one would 

expect high inter-annual variation in the post spawning survival. Unfortunately, no long-term 

studies exist and are sorely needed to assess the driving forces behind the survival patterns.  

 

 
Fig. 4. A schematic presentation of some of the main factors and their potential interactions 

affecting the post-spawning survival of Atlantic salmon.   
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2) Who survives the spawning and overwintering in the river? (paper III) 

 

Based on two years of data, the multi sea winter (MSW) females had a higher post spawning 

survival than (MSW) males (74% vs. 43% survival, respectively), but there was no difference 

in survival between MSW females and 1SW males (62% survival).  

 

The difference in post spawning mortality is most likely due to different energy allocation in 

the spawning event (Jonsson et al. 1991b). Male Atlantic salmon are known to invest a lot of 

energy in spawning (35% of somatic energy, 59% of total energy reserves) (Jonsson et al. 

1991b), as a result of active and aggressive behaviour and investments in secondary sexual 

traits. This energy loss, when added to injuries acquired during intense male-male 

competition, may lead to high post-spawning mortality among males (Bagiliniere et al. 1990, 

1991, Jonsson et al. 1990, Fleming et al. 1997, Fleming 1998). On the other hand, 1SW males 

might spend less energy during spawning than MSW males, as the secondary sexual 

characteristics and mating success are positively related to body size (Fleming and Gross 

1994, Jonsson et al. 1997, Jonsson and Jonsson 2003). In contrast to males, females invest 

less of their somatic energy in spawning (25%), even though total investments in spawning 

are on par with males (59%, Jonsson et al. 1991b). This is because females invest most of 

their reserves in egg production (~30%, Jonsson and Jonsson 2003), little in aggression, and 

therefore they suffer lower post-spawning mortality (Bagiliniere et al. 1990, 1991, Jonsson et 

al. 1990, Fleming et al. 1997, Fleming 1998).  Consequently, repeat spawning is more 

common in females than males (paper IV, Mills 1989, Erkinaro et al. 1997, Niemelä et al. 

2000).  
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3) What steers the kelt out-migration? (paper III) 

 

Prior to their ocean feeding migration, Atlantic salmon kelts often remain in fresh water for 

extended periods, despite low food availability. We hypothesized that this extended 

freshwater stay is the outcome of adaptive, state-dependent habitat use. We expected that due 

to different sex and size-dependent energy allocation in the spawning event (Jonsson et al. 

1990, 1997, Fleming et al. 1997, Niemelä et al. 2000) (i) fish in poor body condition would 

leave the river early, (ii) males would leave the river earlier than females, and (iii) large fish 

would leave earlier than small fish. We found that the body condition and sex were strong 

predictors for the migration behaviour as expected, but found no or contrary evidence for the 

effect of size.  

 

The seaward migration occurred in two periods – in autumn and early winter (October-

January) and spring (April-July). The autumn migrants were mostly MSW males with low 

repeat spawning probability, whereas MSW females and 1SW males with higher repeat 

spawning probability waited until the spring. The body condition of Atlantic salmon, both 

when entering the river and after overwintering, was a strong predictor for the migration 

behaviour; the fish in lower body condition left the river earlier. Among the spring migrants, 

the kelts in best condition waited the longest to migrate to the sea, coinciding with the out-

migrating smolts, which suggests that kelts might benefit from staying in the river until an 

optimal energetic trade-off regarding the river and sea habitats.  

 

We conclude that the seaward migration of kelts unfolded according to the asset protection 

principle (Clark 1994), that predicts that individuals with low energy reserves and a low 

probability to reproduce again should accept risky, productive habitats (in this case, the sea), 

whereas individuals with large reserves and a high probability to reproduce again should 

choose safe, less productive habitats (the river). Further, as females had high post-spawning 

survival and overwintering probability, the management and conservation implications of the 

findings of paper III are to ensure over-wintering and out-migration success of females, in 

order to increase their chances of returning as repeat spawners.  
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4) What is the mortality of kelts during the out-migration? (paper I,II and IV) 

 

Based on three years of data, the mortality of kelts during the out-migration was low, as on 

average 91% survive the fishing season start, sea entry and fjord migration. Only 0.5% were 

caught and killed in the in-river fisheries and 4% in the fjord fisheries (paper IV).  

The low mortality in the in-river fisheries was surprising, as in years of long overlap between 

kelt migration start and fishing season many kelts get caught and released (C&R) in the river 

(paper II). Evidently, kelts have a high tolerance for being caught and released, as C&R did 

not significantly affect immediate or delayed post release mortality when compared to an 

uncaught control group. C&R affected the post release behaviour of kelts only by delaying 

the river descent, but did not affect timing of sea entry or migration speeds. Hence, releasing 

angled kelts can be recommended as a viable management strategy to enhance the return rate 

of repeat-spawners.  

 

The low mortality in the fjord fisheries might be due to the swimming patterns of kelts. 

Judging from the swimming speeds observed (mean minimum velocity 1.6 km/h, paper I), 

the kelts swim quite directly through the fjord and into the open sea, and in consequence do 

not get easily caught in the fishing gear placed along the shore-lines.   

 

 Generally, the results indicate that sea-entry and early sea migration is not a bottleneck of 

survival for Atlantic salmon kelts, despite their weakened condition after spawning and 

overwintering in the river and the overlap in migration timing with the fishing season both in 

the river and the fjord (paper I, II and IV). This conclusion is supported by the observations 

of Hubley et al. (2008) and Hedger et al. (2009) who also concluded with high out-migration 

survival (70-90%) of Atlantic salmon kelts in Canada by the use of similar study methods and 

design.  
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5) What are the maturation schedules of repeat-spawners? (paper IV) 

 

Based on the returns of the acoustically tagged kelts, the most common time for kelts to mend 

between successive spawnings is two years (94%, called alternate spawners). In practice this 

usually means only one whole year at sea, as the large majority of kelts overwinter in the 

river (paper III). The remaining 6% of the returning kelts spent three years mending (i.e. two 

years at sea).  

 

To complement the data amassed from the acoustically tagged kelts, a 29-year long time-

series of scale material from the in-river fisheries was used to estimate parameters used in the 

simulation model in paper IV (referred to in the paper as unpublished data, presented below 

in Tab. 1). Scales from the in-river fisheries were obtained from anglers 1981-2010 (n=12 

213). For each individual, catch location and date, sex, length and weight were recorded. An 

eroded zone in the scale was used as the criterion to identify repeat-spawners (White and 

Medcof 1968; Ducharme 1969).  
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             Maidens                    Repeat-spawners 

 Female Male  Female Male 
SW n % n % SW n % n % 

 
 
 

1 

 
 
 

334 

 
 
 

7 

 
 
 

4829 

 
 
 

77 

1S1C 0 0 2 4 
1S1 23 14 13 23 
1S2 5 3 5 9 
1S3 1 1 1 2 

1S1S1C 3 2 0 0 
1S1S1 4 3 0 0 

1S1S1S1C 1 1 0 0 
 

2 
 

493 
 

11 
 

398 
 

6 
2S1C 3 2 5 9 
2S1 65 41 21 38 
2S2 2 1 2 4 

2S1S1 3 2 0 0 
 

3 
 

3654 
 

78 
 

861 
 

14 
3S1C 6 4 0 0 
3S1 35 22 7 13 

3S1S1C 1 1 0 0 
3S1S1 4 3 0 0 

4 171 4 206 3 4S1C 2 1 0 0 
4S1 1 1 0 0 

5 9 0 3 0 - - - - - 
7 1 0 0 0 - - - - - 

Sum 4662 100 6297 100 Sum 159 100 56 100 
 

Tab. 1. Life-history characteristics of maiden and repeat-spawners caught in the river 1981-
2010. Scales were analyzed to differentiate between maiden (1SW, 2SW, etc. where 1SW 
denote one sea winter, and so on) and repeat-spawners (1S1, 2S1, etc. where 1S1 denote one 
year at sea followed by first spawning (S) and reconditioning period of 1 year (1) at sea and 
second spawning run). Consecutive spawners (repeat-spawners spawning the consecutive 
year after less than a full year at sea), are marked with an additional C to differentiate from 
alternate spawners spending a full year at sea.   

Corresponding roughly to the findings from the acoustically tagged kelts (paper IV), 90% of 

the female repeat-spawners from the in-river fisheries were caught during their second 

spawning trip to the river (Table 1), 9 % were caught during their third trip, and only 1% 

during their fourth trip. All the caught repeat spawning males were second time spawners. 

The most common strategies for both females and males were 1S1, 2S1 and 3S1, and these 

three life history strategies combined accounted for 78 and 74% of all strategies, respectively 

(Table 1). The most common time period needed to mend between successive spawnings was 

2 years (82 %, alternate spawners), but, 7% of the repeat-spawners spent two whole years and 

1% three whole years at sea before return. In addition, 7% of the second time spawners 

returned the consecutive year (consecutive spawners) and, 4% of the multiple spawners 

changed their strategy from alternate to consecutive (Table 1). Consecutive spawners must 

have left the river right after spawning (autumn migrants) or returned the same year as their 

kelt outward migration after only a summer at sea.  
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The females had a greater diversity in life-history strategies than males, and young maidens 

(1 and 2SW) had the highest probability to spawn again in both sexes (!2, P < 0.01). For 

example, females spawning for the first time after 1SW and 2SW constituted only 7 and 11% 

of the maiden spawners, but 25 and 46% of repeat-spawners (Table 1). Based on the scale 

material from the in-river catches, the  proportions of repeat-spawners were on average 4% 

for females (range 0-10%) and 1% for males (range 0-5%). 

Maturation schedules represent an intriguing energetic bet-hedging. For example, fecundity 

increases with body size, which is achieved by prolonging the growth period; on the other 

hand, the probability of surviving to reproduce decreases with prolonged sea-migration 

(Jonsson et al. 1991a, 2003). The complex array of life-history variation observed also in this 

study is possibly a compensating or bet-hedging tactic for life in stochastic environments 

(Fleming and Reynolds, 2004). Different age at maturation and overlapping generations 

provides a recovery potential in the event of catastrophic failure of any single brood year, and 

an important source of genetic variation to populations over multiple generations (Schindler 

et al. 2010). 

 

6) How large is the repeat-spawner weight gain at sea? (paper IV) 

 

The acoustically tagged kelts increased their weight at sea by 47% on average (range 10-

74%) and had an average weight of 13 kg upon return. Based on the scale material from the 

in-river catches (presented above), the average weight of the four most common second time 

spawners were 9, 12, 15 and 16 kg for 1S1, 2S1, 3S1 and 4S1 salmon, respectively, used as 

such in the model built in the paper IV.  
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7) How many repeat-spawners return from the sea? (paper IV) 

 

Based on two years of data, the returning rate of post-spawned Atlantic salmon was high; an 

average of 39% for females and 19% for males. The estimate given is an absolute minimum 

estimate due to documented tag loss and failure. Based on the tag expulsion and failure rates 

(20%-45%, paper IV), the assumed return rate of females could be in the range of 47%-57%. 

The high return rate indicates that the post spawning Atlantic salmon might face relatively 

low predation pressure and other mortality at sea. Nevertheless, one has to bear in mind that 

there is generally high variability in return rate both among rivers as well as among years 

within rivers, depending on a variety of factors both in the river and the sea (Dempson et al. 

2004), and one would need several more years to assess the variability in returning rate.    

 

It is important to emphasise that there are uncertainties in earlier repeat spawning estimates. 

Repeat spawning has commonly been determined from scale sample reading (e.g. Heggberget 

1989) or mark-recapture studies (e.g. Berg et al. 1988). Both methods, albeit widely used, 

have their limitations: mark-recapture is often dependent on the reporting rate of fishermen 

(Berg et al. 1988), while scale sample reading is a subjective method and might be especially 

vulnerable for recognizing repeat-spawners due to the frayed edges of scales resulting from 

spawning and overwintering in the river (Gunnel Østborg, personal communication). 

Telemetry methods circumvent these particular limitations, and as seen from the model 

output from paper IV, the repeat spawning rate in the Alta female population was 

considerably higher (average of 20%) when estimated by the use of telemetry than when 

estimated from scale samples from in-river catches (3%; Heggberget 1989, 4%; Halttunen et 

al. unpublished data).   
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8) What is the repeat-spawner fisheries mortality during in-migration? (paper IV)  

 

Based on three years of data, the mortality both in the coastal and in-river fisheries were 

moderate (average of 11 %). Most of the mortality (8%) occurred in the fjord-fisheries that 

use bag-nets and bend-nets. This might be due to the large size of repeat-spawners that 

exposes them to size selective gear in the fjord. Increased susceptibility of repeat-spawners to 

being caught in the sea fisheries was also reported by Jonsson et al. (2003), Niemelä et al. 

(2006) and Anon. (2010).  

 

In contrast, our estimates of the mortalities in the in-river fisheries (4% for females) were 

surprisingly small compared to the estimated capture rate for maiden female fish (17%, 

Jensen et al. 2010). Low capture rates of repeat-spawners in the river might be due to reduced 

catchability. One can speculate that the catchable maidens may get caught during their first 

spawning migrations, and the uncatchable maidens become uncatchable repeat-spawners. 

Individual fish within a population show individualistic behavioral traits (Greenberg and 

Giller 2001), and studies indicate that the catchability between individuals vary in a number 

of fish species (Askey et al. 2006; Lewin et al. 2006). A lower catchability of repeat spawners 

in the fisheries could also imply that their proportion in the spawning population could be 

seriously underestimated in scale samples collected from the fisheries.  
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9) How much do repeat-spawners contribute to the production of eggs in the river? 

(paper IV) 

 

Based on an age-structured simulation model built in paper IV,#in average 20% (range 2%-

46%) of the female population in the River Alta consisted of repeat-spawners and contributed 

on average with 27% (range 2-59%) of all the eggs spawned in the river. The variation 

coefficient was significantly smaller in the presence of repeat-spawners than in the absence of 

them (0.34 (range 0.28-0.40; and 0.41 (range 0.34-0.48), respectively (t-test, P < 0.001), 

which translates in to a more stable population. In consequence, the repeat-spawners might be 

significant in stabilizing short term fluctuations in a population, and may act as an important 

buffer for demographic risk and be crucial in population persistence, especially as the maiden 

survival at sea can be highly variable (Friedland et al. 2005).  

 

The estimates from the model conform to other findings from Canada and Northern Europe. 

For example, Moore et al. (1995) reported that repeat-spawners contributed more than 40% 

of the total egg depositions to the Miramichi River, and Niemelä et al. (2006) calculated that 

repeat-spawners could amount up to 20% in mass (and therefore, in eggs) in their time-series 

from River Tana. Previous spawners have also been reported to form a considerable portion 

of spawning stock in many other Atlantic salmon rivers (Chadwick 1988, Mills 1989, ICES 

2004).  
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4. Concluding remarks 
 

As the title of this thesis conveys, post spawning Atlantic salmon stay alive in a much larger 

extent than we anticipated and what is generally documented in the scientific literature 

available (see introduction and the references therein). The survival was high over winter 

(paper III), during sea-migration (paper I, II and IV) and in the fisheries (paper I, II and 

IV), and consequently, the repeat-spawners might contribute significantly to the production 

of Atlantic salmon (paper IV). Repeat-spawners could be especially important during 

declining and fluctuating populations as a buffer against poor maiden recruitment years 

(paper IV).  

 

This is one of the first detailed studies on Atlantic salmon kelt migrations, and one of the first 

attempts made in quantifying the contribution of repeat-spawners (See Figure 5 for a 

summary of the main findings of the thesis). We also provide one of the first estimations of 

the return rate based on following individuals without the need of recapture (telemetry), and 

the use of this method has possibly circumvented some potential biases of traditional methods 

used to assess repeat spawning (mark-recapture and scale sample analysis). The findings 

from this thesis might be used to modify the management of the Atlantic salmon populations 

by strengthening the focus on protecting this potentially important population sub-unit.  
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Fig. 5. The main findings from the research objectives of the thesis. 
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Management implications 

In this thesis we have focused on studying post spawning Atlantic salmon in the river and the 

fjord where management measures are easiest to implement. Potential management actions of 

our findings are:  

• Ensuring over-wintering and down-stream migration success of kelts. In regulated 

rivers it is crucial to maintain high enough base-discharge throughout the winter to 

facilitate the overwintering of kelts. In addition, constructing by-passes for down-

stream migrating kelts is crucial as mortality of kelts migrating past hydro-power 

plants without by-passes has been shown to be high (see Kraabøl et al. 2009). 

• Protecting out-migrating kelts from mortalities in the fisheries by implementing 

compulsory release of kelts both in the rivers and fjords. Alternatively, in areas where 

the overlap between kelt-migration and the fishing season is considerable, delaying 

the fishing season start both in the rivers and adjoining coastal areas.   

• Protecting returning repeat-spawners from mortalities in the fisheries by delaying the 

fishing season start, both in the rivers and fjords. Alternatively, closing the fisheries.  
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Future research needs 

 

As paper IV demonstrates, the main mortality of post-spawners occurs during their sea 

feeding migration. The reasons for this are still unknown as the sea phase of salmon has been 

little studied due to logistical constraints. Mapping the migration routes and feeding areas at 

sea would be crucial in assessing the reasons and locations for mortality at sea. This 

remaining knowledge gap will soon be bridged by novel technologies (e.g. pop-up data-

logging satellite tags and genetics) already in use in on-going studies. The location of feeding 

areas for salmon originating from different areas around the Northern Atlantic is of special 

interest from a management point of view, as it would enable estimating the potential of by-

catch mortalities of salmon in the fisheries, and the effect of fisheries and climate change on 

the prey of repeat-spawners. Knowledge on the feeding areas could also help to understand 

why the survival and growth of salmon from different areas often oscillate out of step (Jensen 

et al. 2011), and to better predict the salmon runs.  

More information is also needed on the contributions of repeat-spawners in order to adjust 

stock-recruitment models of Atlantic salmon, as the survival of post-spawners (and therefore 

ultimately the production of repeat-spawners) is not affected by the density dependent 

mortality of juveniles in the river that the traditional models base upon. Of special interest 

would be to assess the life-time reproductive success of repeat spawning Atlantic salmon and 

the survival costs versus reproductive gains of different repeat-spawner maturation schedules.  

 

The natural step further from merely quantifying the contribution of repeat spawning would 

be to explain what regulates the rate of return spawning in a population. Are the main factors 

permanent or temporal, in the river or at the sea? Potential permanent factors are latitude, size 

and morphology of the river, and the migration distance to sea feeding areas. Potential 

temporal factors are for example climactic variations affecting hydrology and productivity 

both in the river and sea, variations in density of conspecifics, parasites and diseases, and 

variation in predation and harvest rate. The key component in assessing the potential of 

repeat spawning is estimating the adult mortality rate in relation to the juvenile mortality rate, 

and how human activities affect the mortality rates of both adults and juveniles. For example, 

fisheries and habitat degradation have probably been increasing the adult mortality rates of 

many populations while stocking of hatchery reared juveniles may have reduced juvenile 
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mortality rates, and therefore, human activities may have been selecting for semelparity. On 

the other hand, recent expansions in aquaculture might have contributed to increased juvenile 

marine mortality due to sea lice infestations (Finstad et al. 2011), and kelts are possibly less 

susceptible to sea lice due to their larger size and thicker skin. In addition, the commercial 

fisheries might increase the juvenile marine mortality through cascading top-down effects in 

fish communities. Therefore, human activities may as well select for iteroparity. In sum, the 

jury is still out on this one, and despite our extensive knowledge base, we have barely 

scratched the surface in trying to understand the role of repeat spawning in the life history 

strategies of Atlantic salmon. 
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My scientific oath 

 

As a member of the international community of research scholars and I declare the following: 

I acknowledge my fallibility, and shall never forget that whatever small contributions I may 

make to science are possible only because of the collective contributions of all those who 

have come before me. 

I swear that I shall devote my professional life to act with skill and care in all scientific work 

and maintain up to date skills and assist their development in others.   

I also swear to take steps to prevent corrupt practices and professional misconduct and will 

declare any conflicts of interest. I promise never to allow financial gain, competitiveness, or 

ambition cloud my judgment in the conduct of my work. I will ensure that my work is lawful 

and justified, and minimize and justify any adverse effect my work may have on people, 

animals and the natural environment.  

I swear to be alert to the ways in which my research derives from and affects the work of 

other people, and respect the rights and reputations of others. I will seek to discuss the issues 

that science raises for society and listen to the aspirations and concerns of others. I will not 

knowingly mislead, or allow others to be misled, about scientific matters, and I swear that I 

will present and review scientific evidence, theory or interpretation honestly and accurately.  

 

 

The oath is modified from the universal code of ethics for researchers by Sir David King 

(2007), written by Elina Halttunen and Sigurd Tønnessen. 
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