• Sediment transport on the Palos Verdes shelf, California 

      Ferré, Benedicte; Sherwood, Christopher R.; Wiberg, Patricia L. (Journal article; Tidsskriftartikkel; Peer reviewed, 2010-02-01)
      Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, ...
    • SUB-OCEAN: subsea dissolved methane measurements using an embedded laser spectrometer technology 

      Grilli, Roberto; Triest, Jack; Chappellaz, Jérôme; Calzas, Michel; Desbois, Thibault; Jansson, Pær; Guillerm, Christophe; Ferré, Benedicte; Lechevallier, Loïc; Ledoux, Victor; Romanini, Daniele (Journal article; Tidsskriftartikkel; Peer reviewed, 2018-08-16)
      We present a novel instrument, the Sub-Ocean probe, allowing in situ and continuous measurements of dissolved methane in seawater. It relies on an optical feedback cavity enhanced absorption technique designed for trace gas measurements and coupled to a patent-pending sample extraction method. The considerable advantage of the instrument compared with existing ones lies in its fast response time of ...
    • Temporal constraints on hydrate-controlled methane seepage off Svalbard 

      Berndt, Christian; Feseker, Tomas; Treude, Tina; Krastel, Sebastien; Liebetrau, Volker; Niemann, Helge; Bertics, Victoria; Dumke, Ines; Dünnbier, Karolin; Ferré, Benedicte; Graves, Carolyn; Gross, Felix; Hissmann, Karen; Hühnerbach, Veit; Krause, Stefan; Lieser, Kathrin; Schauer, Jürgen; Steinle, Lea (Journal article; Tidsskriftartikkel; Peer reviewed, 2014-01-17)
      Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may ...
    • Water column methanotrophy controlled by a rapid oceanographic switch 

      Steinle, Lea; Graves, Carolyn A.; Treude, Tina; Ferré, Benedicte; Biastoch, Arne; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachel H.; Behrens, Erik; Böning, Claus W.; Greinert, Jens; Sapart, Célia-Julia; Scheinert, Markus; Sommer, Stefan; Lehmann, Moritz F.; Niemann, Helge (Journal article; Tidsskriftartikkel; Peer reviewed, 2015-04-20)
      Large amounts of the greenhouse gas methane are released from the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column, are thought to be mainly controlled by nutrient and redox dynamics. Here, we report repeated measurements of methanotrophic ...