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An operating system kernel where no hosted servie an ause the sla ofanother to be violated is alled an isolation kernel [51℄. The kernel typiallyprovides instrumentation for attributing resoure usage to individual hosted ser-vies and employs shedulers that use this usage information for enforing slas.pu, memory, disk aess, and network bandwidth are among the resoures thatmust be sheduled�to ignore any risks violating an sla. For example, an slaguaranteeing some spei�ed level of �le system throughput an be violated whenthere is insu�ient pu time to handle �le i/o, insu�ient memory to bu�er�le data, or insu�ient disk bandwidth to read or write �le bloks.This artile presents a new isolation kernel, Vortex. Vortex implements�ne-grained aounting and sheduling of system resoures. It de�nes an ab-stration for enapsulating resoures, a system struture that allows resoures tobe sheduled individually or in a oordinated fashion, and a ommon interfaeto resoure-usage aounting and attribution.Three design priniples served as a foundation for the design:(1) Measure all resoure onsumption. If hosted servies an onsume re-soures whose usage is not measured, then resoure sharing poliies anbe irumvented. Consumption of resoures is, to the extent possible,attributed by Vortex to the hosted servie making the demands1.(2) Identify the unit to be sheduled with the unit of attribution. Consider aworker thread handling asynhronous i/o requests on behalf of multiplehosted servies (an approah used in Windows). If this worker threadis the unit being sheduled, then the sheduler has no ontrol over whihi/o requests are handled, even if resoure onsumption ould be retrospe-tively attributed to the orresponding hosted servie(s). Better ontrol anbe ahieved by diretly sheduling the individual i/o requests instead ofthe worker thread. That is, a one-to-one orrespondene is establishedbetween the unit of sheduling and the unit of attribution.(3) Employ �ne-grained sheduling. This allows less error in attribution andinreases opportunities for sharing.The rest of this artile is organized as follows. In Setion 2 we outline the keyelements of the Vortex arhiteture and disuss impliations of our three designpriniples. Setion 3 gives a detailed exposition of important elements in ourimplementation of Vortex on the x86 platform. Setion 4 presents an evaluationof the implementation, using di�erent benhmark appliations to determine ifour Vortex implementation instantiates our design priniples. Related workappears in Setion 5, and Setion 6 o�ers some onlusions.1Some resoure onsumption is hard to attribute at the time of onsumption and mustbe attributed a posteriori. Examples inlude: pu time devoted to proessing interrupts anddemultiplexing inoming network pakets.
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(a) Sheduler ontrols when to dis-path requests. (b) Resoure onsumption reported bak tosheduler.
() Resoures organized in a grid with shedulers on the om-muniation path.Figure 1: Summary of key arhiteture elements.2 Kernel arhiteture2.1 Arhiteture overviewFigure 1 depits the key elements of the Vortex arhiteture. Eah resoureorresponds to a �ne-grained software omponent, exporting an interfae foraess to and use of hardware or software, suh as an i/o devie, a networkprotool layer, or a layer in a �le system.Higher-level kernel abstrations and funtionality are implemented by on-�guring resoures into a resoure grid, where resoures exhange resoure requestmessages. A resoure request message spei�es parameters and a funtion toinvoke at the interfae of the destination resoure. The serviing of a request isasynhronous to the sending resoure.Shedulers may be interpositioned between resoures. Requests reeivedby a sheduler may be bu�ered and/or dispathed to a resoure in any orderonsistent with inter-request dependenies.To aount for resoure onsumption, exeution in response to a request ismonitored. The monitoring is performed external to a resoure, using instru-mentation ode that measures pu and memory onsumption to exeute therequest, perhaps determining those values retrospetively. After eah request isexeuted, its resoure onsumption is reported to the dispathing sheduler.All resoure requests speify an ativity to whih resoure onsumption isattributed. If a resoure sends request r2 as part of handling request r1, then theativity of r2 is inherited from r1. Computations involving multiple resouresan thus be identi�ed as belonging to one ativity. An ativity an be a proess,a olletion of proesses, or some proessing within a single proess.3



In Vortex, we foused on supporting onventional operating system abstra-tions, where an ativity typially is assoiated with a proess.2.2 Measure all resoure onsumptionThe pu onsumption inurred by a disk devie driver to handle a request forreading 10 setors on a disk is typially the same as would be needed for a requestto read 20 setors. But memory usage di�ers for these two requests. Moreover,the atual elapsed time for exeuting the two requests will vary, dependingon the ontents of disk ontroller ahe, the position of disk heads, rotationalposition, et. Thus, a disk is an example of a resoure that, for e�etive ontrol,requires a sheduler with aess to information that is not easily aptured insoftware, but ould be predited by software. For example, the ontents of thedisk ontroller ahe might not be aessible but an be estimated by knowledgeof its size and observations of how long it takes to omplete requests.To give shedulers aess to hidden information, Vortex uses resoure on-sumption reords. These are extensible data strutures desribing the resoureonsumption inurred by exeuting a resoure request. Fields onerning basiresoure onsumption are set by Vortex instrumentation ode, and additional�elds are attahed by instrumentation ode inside the resoure itself. For exam-ple, reords desribing resoure onsumption when exeuting a disk read requestould inlude pu and memory usage along with additional information: howlong it took to omplete the request, and the size of the queue of pending re-quests at the disk ontroller. This additional information would be supplied byinstrumentation ode running in the disk driver.Measurement and attribution of resoure onsumption are separate tasks.Measurement is always retrospetive whereas attribution may or may not beknown in advane of the request proessing. For example, when a read requestis submitted to a disk driver, the ativity to attribute is typially known inadvane, but resoure onsumption might not be available until after requestexeution ompletes. Another example is interrupt proessing or early networkpaket proessing, where the ativity to attribute is di�ult to dedue untilproessing ompletes. If resoure use must be predited, then a sheduler anuse heuristis based on history to estimate resoure onsumption.If attribution annot be determined, for example if an ativity annot beassoiated with some network paket proessing, slas might be violated. Noamount of instrumentation, sheduling, or over-provisioning, an ensure that ansla will be satis�ed in the fae of unantiipated load. The impliation is that anisolation kernel implementation must make assumptions about the environment.2.3 Identify the unit to be sheduled with the unit of at-tributionOur arhiteture requires shedulers to ontrol exeution of individual requests,where eah request spei�es at most one ativity for attribution of resoure on-4



sumption2. Notie, however, that even if eah request is identi�ed with someativity, then attribution ambiguity remains possible. Consider a �le blok ahethat optimizes memory utilization by sharing idential �le bloks aross ativi-ties. If two ativities aess the same �le blok, then the resoure onsumptioninurred by fething and ahing the blok ould oneivably be attributed toeither ativity. The sheduler should therefore be aware of the sharing. In pra-tie, this is aomplished by reording resoure onsumption reords produedwhen a �le blok is fethed and ahed, and having these reords available toshedulers.Timely exeution of a request must be ensured, and sharing an ause om-pliations here. Consider a �le blok request made when an idential �le blokis already sheduled for feth to satisfy some other ativity. i/o utilization isimproved by delaying this seond feth request until the feth for the �rst om-pletes. But, depending on the sheduler, the pending feth ould be sheduledsooner if performed in ontext of the requesting ativity. So, timely exeutionrequires knowledge of a seond request, and using priority inheritane teh-niques [57℄. Our poliies for attribution and sheduling must aommodatesuh nuane.2.4 Employ �ne-grained shedulingA sheduler might not be able to predit what resoure onsumption will resultfrom a sheduling deision. For example, a �le is typially implemented using a�le blok ahe, �le system ode, a volume manager, and a devie driver layer.Eah employs ahing, and a �le system request ould traverse all or only asubset of the layers. A sheduler is unlikely to know in advane what layers a�le request will traverse nor what is ahed at the time a request is made. Thus,onsidering �le requests as the unit of sheduling might entangle resoures thata sheduler would want to ontrol separately. For example, a sheduler mightwant to ontrol requests to the �le blok ahe based on memory onsumption,whereas the amount of data transferred might be a desirable metri at the diskdriver level. To disentangle resoure onsumption, the Vortex kernel is dividedinto many �ne-grained resoures that an be ontrolled separately.An inreased number of resoures implies a orresponding inrease in thenumber of requests that have to be sheduled. This inreases sheduling over-head. To redue overhead, our arhiteture exeutes all requests to ompletion.One a sheduler dispathes a request to a resoure, the proessing of that re-quest is never preempted. The absene of preemption implies that requests anbe dispathed with little overhead.Our arhiteture expets resoures to handle onurrent exeution of re-quests, as needed on a multi-ore mahine. Consequently, resoures use syn-hronization mehanisms to protet their shared state. Absene of preemptionsimpli�es things onsiderably. A system that did have support for preemption2Hardware restritions might limit a sheduler to ontrolling exeution of an aggregate ofrequests. For example, the hardware might not support identifying ativities with separateinterrupt vetors. 5



Figure 2: Requests are plaed in request queues.of request exeution would have to release loks before returning ontrol to thesheduler or risk deadloks due to priority inversion [57℄. So, a sheduler in suha system would have to make allowanes for inreased request exeution time inthe ase of ontested loks. Vortex shedulers need not be onerned with suhompliations.3 Kernel implementation3.1 Sheduler toolkitVortex employs a toolkit that enapsulates and automates tasks ommon arossshedulers. The toolkit provides implementations for aggregation of requestmessages, inter-sheduler ommuniation, management of resoure onsumptionreords, resoure naming, and inter-ore/pu ommuniation and management.The toolkit provides request queues as ontainers for requests that requirea spei� resoure, as illustrated in Figure 2. Whenever a resoure sends arequest, the toolkit loates an existing request queue or reates a new one, onwhih the request will be queued. A sheduler an read, reorder, and modify thequeue. A typial senario arises with disk requests, where the order in whihrequests are forwarded to the disk is re-ordered to redue disk head movement.Dependenies among requests are spei�ed by assigning dependeny labelsto requests. Shedulers ensure that requests with the same dependeny labelare exeuted in the order made. Requests belonging to di�erent ativities arealways onsidered independent, as are requests sent from di�erent resoures.As suh, a resoure an generate dependeny labels by using a simple ounter,whih is onatenated with the sending-resoure identi�er and the identi�er ofthe ativity to attribute.Eah request is represented using a data struture ontaining: the desti-nation resoure, the sending resoure, the ativity to attribute, a dependenylabel, an a�nity label, and a desription of whih funtion to invoke in thedestination resoure (along with parameters to that funtion).Figure 3 illustrates the di�erent steps involved from when a request is sent6



(a) Steps when sending arequest. (b) Steps when exeuting arequest.Figure 3: Steps when sending and exeuting a request.until it is exeuted in the reeiving resoure. Sending a request follows threesteps in Figure 3(a) where (1) the sheduler assoiated with the queue is noti�ed,(2) the request is queued, and (3) the sheduler is given an opportunity torequest pu time from a pu multiplexor before ontrol is returned bak to thesending resoure.Then, as depited in Figure 3(b), exeution of a request follows four stepswhere (1) the pu multiplexor deides to allot pu time to a partiular resoure,(2) the governing sheduler is onsulted for a deision as to what request(s) todispath to the resoure, (3) the seleted request(s) are dispathed and exeutedto ompletion, and (4) resoure onsumption reords are made available to thegoverning sheduler at some, possibly later, point.A sheduler an be on�gured to request resoures from another shedulerinstead of from a pu multiplexor. This provides a means to ontrol othershared resoures. For example, i/o devies are typially attahed to a hostomputer through an i/o bus that an be shared with other i/o devies. Thisbus may, in turn, be part of a hierarhy of shared buses, terminating at aninterfae to main memory. If the aggregate apaity of onneted i/o deviesexeeds the apaity of the bus hierarhy, then the apaity of any single i/odevie will vary depending on urrent bus load. Utilizing the ability to on�gureshedulers to request resoures from another sheduler, an i/o bus sheduler anbe introdued without the need to manifest the i/o busses as preeding resouresin the resoure grid.More details on sheduler implementation an be found in the Appendix.3.1.1 Sheduling multi-ore arhiteturesIn a multi-ore system, one pu multiplexor is assigned to eah ore. Eahmultiplexor ontrols how the ore is sheduled. To e�iently exploit multi-orearhitetures, ertain sets of requests are best exeuted on the same ore or onores that an e�iently ommuniate. For example, we improve ahe hits ifrequests that result in aess to the same data strutures are exeuted on the7



Figure 4: Sheduler requesting pu time from four pu multiplexors.same ore.To onvey information about data loality, resoures attah a�nity labels torequests. A�nity labels give hints about pu multiplexor preferenes; if a pumultiplexor reently has exeuted a request with a partiular a�nity label, newrequests with the same a�nity label should preferably be exeuted by the samepu multiplexor.The toolkit onsults the sheduler preeding a resoure to obtain a pumultiplexor binding for an a�nity label. The returned binding is ahed by thetoolkit until an expiration spei�ed by the sheduler; until expiration, subse-quent requests with the same a�nity label are exeuted by the seleted pumultiplexor. The toolkit ensures that (1) requests are only exeuted by the pumultiplexor seleted by the governing sheduler, (2) pu time is only requestedfrom seleted pumultiplexors, and (3) a pumultiplexor only dequeues eligiblerequests.Figure 4 illustrates a sheduler requesting pu time from four pu multi-plexors. One way to instantiate this on�guration is to allow sheduler andqueue state to be aessed onurrently by all four pu multiplexors on bothrequest queue and dequeue paths. This design risks synhronization bottleneksand exessive inter-ore exhanges of sheduler and queue state. To mitigatethis risk, the toolkit always instantiates multi-ore on�gurations with separaterequest queues per ore, as illustrated in Figure 5. In addition, the toolkit pro-motes a sheduler struture that separates shared and ore-spei� state. Forexample, a round-robin sheduler would maintain per-ore state about regis-tered lients (i.e. request queues) along with a shared ounter for reating apu multiplexor binding. Similarly, a weighted fair queueing (wfq) [18℄ shed-uler would maintain per-ore state about lients but rely on a more omplexstrategy for deiding how a�nity labels are bound to pu multiplexors3. Un-3Our wfq implementation inspets per-ore state to deide whih pu multiplexor shouldhandle an a�nity label; one load sharing algorithm that we have implemented assigns thelabel to the ore at whih the orresponding ativity has proportionally reeived the leastresoures. 8



Figure 5: Separate sheduler state and request queues per ore.der this struture, sharing typially only ours when requests are sent fromone ore and queued for exeution on another, and when a sheduler inspetsshared state to selet a pu multiplexor for an a�nity label.With separate request queues per ore, exeution-order onstraints imposedby dependeny labels are triky to satisfy. If requests with the same dependenylabel are queued to di�erent pu multiplexors, then load imbalane amongthe pu multiplexors ould result in violating exeution order dependenies.This is prevented in Vortex by requiring resoures to assign the same a�nitylabel to dependent requests, ausing dependent requests to have the same pumultiplexor binding, hene be plaed in the same request queue.Another ompliation, whih is handled by the toolkit, is expiration of a pumultiplexor binding. If a binding expires while there are queued requests, thenthe toolkit will, in one atomi ation, obtain a new binding from the governingsheduler, move a�eted requests to a potentially new queue, and update itspu multiplexor binding ahe.3.1.2 Sheduler on�gurationA on�guration �le provides the toolkit with information it needs for instanti-ating shedulers in a resoure grid. The on�guration �le desribes the type ofsheduler to use at eah resoure, as well as desribing on�guration parameters.The proess of instantiating these shedulers is fully automated: at boot time,the toolkit reads the on�guration �le and instantiates shedulers.The toolkit maintains a repository of all available shedulers. Shedulersin this repository are ompiled as part of the kernel. Eah sheduler is namedaording to the type of algorithm it implements. For example, our wfq shed-uler falls into the ategory proportional share shedulers and is, as suh, named�propshare.wfq�. The name of a sheduler is used in a on�guration �le to speify9



<?xml version="1.0"?>
<sheduleron�g>

<!−− CPU Multiplexors −−>

<pumultiplexor tag="pumux0">
<ore> 0 </ore>
<algorithm> propshare.wfq </algorithm>

</pumultiplexor>
<pumultiplexor tag="pumux1">

<ore> 1 </ore>
<algorithm> propshare.wfq </algorithm> 10

</pumultiplexor>
<!−− Resoure shedulers −−>

<resouresheduler>
<resoure> resoure.tp </resoure>
<algorithm> propshare.round−robin </algorithm>

<pumultiplexor>
<tag> pumux0 </tag>
<share> 20 </share>

</pumultiplexor> 20
<pumultiplexor>

<tag> pumux1 </tag>
<share> 40 </share>

</pumultiplexor>
</resouresheduler>
<resouresheduler>

<resoure> resoure.thread </resoure>
<algorithm> priority.strit </algorithm>

<pumultiplexor>
<tag> pumux0 </tag> 30
<share> 40 </share>

</pumultiplexor>
</resouresheduler>

</sheduleron�g>Figure 6: Exerpt from a sheduler on�guration �le.the partiular sheduler to assoiate with a resoure.Figure 6 ontains exerpts from a on�guration �le, where a round-robinsheduler is seleted for the tp Resoure and a strit-priority sheduler isseleted for the Thread Resoure4. The tp sheduler is on�gured to requestpu time from both pu multiplexor 0 and pu multiplexor 1; the ThreadResoure only requests pu time from pu multiplexor 0. The on�gurationof Figure 6 is an example of an asymmetri on�guration, i.e. a on�gurationwhere resoures are on�gured to use only subsets of the available ores. Suhon�gurations are fully supported by the toolkit. This allows deployments withsome ores dediated to resoures, where saling through �ne-grained loking oravoidane of shared data strutures is di�ult. Typial examples are resouresthat govern i/o devies using memory-based data strutures to speify dmaoperations.4The Thread Resoure provides a thread abstration for proesses.10



Figure 7: VMM resoures and ommuniation paths.The toolkit does not analyze sheduler omposition, so a on�guration mayontain �aws. For example, if a resoure is sheduled using an earliest deadline�rst [41℄ algorithm and pu time is requested from a pu multiplexor using awfq algorithm, then the resoure sheduler an make no real-time assumptionsabout deadlines. Reasoning about orretness requires a formalization of thebehavior of eah sheduler, and then an analysis of the interation betweenbehaviors. See [22, 25, 37, 40, 54, 55℄ for work in this diretion.3.2 Virtual memory managementThe Vortex virtual memory management (vmm) arhiteture is depited in Fig-ure 7. The Address Spae Resoure (asr) implements logi for onstrutingand maintaining page tables and also provides an interfae for alloating andontrolling translations for regions of an address spae. asr is used by otherresoures to export and make data objets aessible in a proess address spae.For example, the Exeutable Resoure (er) uses the asr interfae to export thesegments of an exeutable �le (text, data, bss, et.) into the pertinent regionsof the address spae.Page faults are direted to the asr. To handle one of these, asr determineswhether the faulting address is in a region alloated by some resoure and, ifso, sends a request for data to the resoure responsible for that address. Whenreeiving suh a request, resoures are required to respond with data alreadyahed in the resoure, by alloating memory from the memory multiplexor orby retrieving the data from other resoures. For er, further ommuniationwith the File Cahe Resoure (fr) is typially performed to retrieve data fromthe exeutable �le.The Swap Resoure (sr) provides an interfae for preserving objets on se-ondary storage. Resoures use sr whenever relaimed memory ontains objetsnot easily reonstruted from other soures. For example, text an be re-readfrom an exeutable, but modi�ed heap and bss memory must be preserved for11



future referene.Relaiming memoryWhether additional memory is needed when exeuting a request is di�ult forthe sending resoure to determine without aess to state that is internal to thereeiving resoure. For example, the reeiving resoure might use ahing tospeedup request proessing. Therefore, resoures alloate memory from thememory multiplexor when needed, typially as part of exeuting a request.Available memory being low or the orresponding ativity exeeding its memorybudget, auses the memory multiplexor to rejet an alloation. In suh ases,memory relamation ations must be initiated to ensure eventual exeution ofthe original request.The memory multiplexor deides what physial memory to relaim. A re-soure must be prepared to relinquish referenes to alloated memory upon re-eiving memory relamation requests from the memory multiplexor. For voidingreferenes to the physial memory spei�ed in a relamation request, resouresare required to determine what that memory is used for. To maintain thisorrespondene, the memory multiplexor interfae allows resoures to assoiateookies with memory alloations. An assoiated ookie is returned with eahmemory relamation request; this ookie aids in loating referenes to the mem-ory being relaimed. For example, when fr alloates memory for a �le blok, areferene to the �le serves as the ookie. That way, if the memory is relaimed,then the ookie enables the fr to update its internal data strutures.Our implementation assoiates a separate ativity with eah proess, so therelamation poliy of the memory multiplexor di�erentiates among proesses.By inspeting alloation requests, the memory multiplexor an determine howmuh memory eah resoure onsumes on behalf of a partiular ativity. Still,making relamation deisions onduive to improved performane typially re-quires additional information. For example, if frequently used memory in theproess heap is relaimed then performane will erode. Likewise, relaimingproess text memory will result in poor performane.To obtain needed additional information, the memory multiplexor relieson resoure instrumentation, to produe resoure information reords. Thesereords provide memory usage statistis and other pertinent information. Forexample, asr regularly ollets the modi�ed and aess bits stored by page ta-bles. Similarly, asr informs the memory multiplexor whether memory has beenmodi�ed.The at of relaiming memory might require updates in resoures other thanthe one that initially alloated the memory. For example, er relies on fr toahe segments of the exeutable �le. Moreover, er uses asr in order to insertpage table translations for those segments. Hene, memory for ahing segmentsis initially alloated for fr, but referenes to that ahe ultimately exist in boththe fr and the asr. In order to relaim this memory, updates in asr and frare needed. The memory multiplexor o�ers an interfae for this. Using theinterfae, asr auses the memory multiplexor to diret relamation requests to12



the asr. Upon reeiving a relamation request, asr performs the neessarypage table updates and forwards the request to the resoure responsible forthe orresponding region. In the ase of exeutable segments, er will in turnperform its internal bookkeeping and then forward the request to the fr.Assoiating a single ativity with all vmm-related requests from a proessdoes not prohibit a sheduler from treating various types of proess requestsdi�erently. We have implemented shedulers for fr that reorder and delayqueues aording to the sending resoure; this allows Vortex to favor demand-paging tra� over regular i/o tra� from a proess. It redues the time beforememory is freed for reuse and also the duration a proess is bloked awaitingarrival of pages not present.3.3 I/OVortex implements the posix asynhronous i/o interfae. This interfae sup-ports asynhronous transfer of data between bu�ers in a proess address spaeand a kernel supported i/o resoure. Eah i/o operation is desribed by a datastruture that spei�es a desriptor on whih the operation is to be performed, apointer to a data bu�er, and some indiation of how the alling proess/threadshould be noti�ed one the operation terminates.3.3.1 Asynhronous I/OThe posix asynhronous i/o interfae is largely implemented by the asyn-hronous i/o resoure (aior). aior abstrats eah i/o operation in terms of asoure resoure that produes data and a sink resoure that onsumes data. Thesoure orresponds to the provider of data for a region in the proess addressspae in the ase of writes, and it orresponds to any i/o resoure for reads.The sink is analogous. The aior orhestrates data �ow from soure to sink.aior requests data from a soure resoure by sending it a read request. Thesoure in turn responds with a read_done request ontaining the target data.A similar protool is used when interating with sink resoures. aior writesdata to a sink by sending a write request to it, and the sink signals that thedata has been onsumed by sending a write_done request bak. Soures andsinks may use other resoures to satisfy a read or write request or to interatwith a hardware devie.i/o operations an exeute onurrently. Prefething and overlapping intro-due ordering onstraints among requests belonging to the same i/o operation,beause data must arrive at a sink in the order sent by a soure. aior solves thisproblem by assigning the same dependeny label to all requests derived from thesame i/o operation. Thus, multi-ore parallelization ours at the granularityof i/o operations.Similar to Vortex' vmm system, aior sets the ativity binding of derivedrequests to the requesting proess. By inheritane, all other requests generatedas part of the i/o operation will then point to the same proess.13



3.3.2 InterruptsInterrupts are integral to the operation of many i/o devies. A resoure thatoperates suh an i/o devie must register with the Interrupt Resoure to reeiveinterrupts originating from the devie. Interrupts are initially aptured by a low-level Interrupt Resoure handler, whih reates and sends a resoure requestdesribing the interrupt to the appropriate resoure.Resoure onsumption for interrupts is attributed retrospetively. For thelow-level handler, instrumentation ode reates resoure reords to return putime to any interrupted ativity. Similarly, instrumentation ode in the resourereeiving the interrupt request produes resoure reords for retrospetive at-tribution, if the ausing ativity an be dedued.3.4 The proess, system alls, and threadsA resoure may export routines in its interfae that should be aessible notonly to other resoures but also to proesses. Suh funtions are exposed asVortex system alls. The resoure programmer ahieves exposure by using astub generation faility that, for eah funtion, reates a stub for onvertinga system all into a resoure request message sent to the resoure. The stubalso deouples system all arguments from any proess-dependent ontext. Forexample, the stub translates virtual memory pointers to their orrespondingphysial memory pointers, ausing page faults if neessary to bring data pre-served by the Swap Resoure into physial memory. Referene ounting ensuresthe physial memory pointers are valid for the duration of the all5.System all messages from a proess originate from the Proess Resoure(pr). The pr implements the onventional proess abstration, using asr tohandle address spae operations. To implement proess exeution ontexts, thepr uses the Thread Resoure (tr). tr provides an interfae for onventionalthread operations, suh as reate, exit, suspend, resume, join, et.tr drives exeution of threads by using resoure request messages. Whena thread enters the ready state, a resoure request is sent to tr, leading thetr sheduler to request pu time from a pu multiplexor. When the requestis dispathed, tr loates the ontrol blok of the orresponding thread, sets upa timeslie timer, and ativates the thread. After ativation, the thread runsuntil the timeslie expires or a bloking ation is performed. While the threadis running, the pu multiplexor regards tr as exeuting requests. (Preemption-interrupts are delivered diretly from the low-level Interrupt Resoure handler,sine subjeting these to sheduling would require involvement of the pu mul-tiplexor.)Only the proess address-spae and system-all stubs are addressable to athread. Consequently, a thread annot subvert a sheduler by diretly invokinga funtion in a resoure interfae.Turning system alls into requests inreases overhead but improves shedulerontrol. For example, a diretly-invoked funtion ould erode sheduler ontrol5Conurrent relamation of memory is delayed until the all ompletes.14



by obtaining loks, thereby preventing timely exeution of other sheduler-dispathed requests. Yet, in some ases, exeuting a funtion does not in-terfere with sheduler ontrol. Examples inlude alls suh as getpid() andgettimeofday() and funtions in the tr interfae. To aommodate theseases, the resoure programmer is allowed to onstrut stubs that diretly allfuntions in the resoure interfae.Diret invoation of funtions in a resoure ould allow one servie to in-terfere with others. For example, in Vortex, we primarily use interproessorinterrupts (ipis) to dispath work that requires immediate exeution on a spe-i� ore. In an early implementation, we used ipis to perform operations onthreads hosted by remote ores. This deision, however, enabled a thread todisrupt work being performed on all ores in the system by spawning a seriesof thread operations. The urrent implementation uses the ipi mehanism onlywhen the target thread is running on a remote ore; otherwise, a request isinstead sent to tr resoure.3.5 Resoure implementationKernel-level programming within Vortex amounts to implementing resoure re-quest message-handlers and resoure shedulers. A typial message handlermight reply to a request or send a request to another resoure. The fr, forexample, does both: it may respond with a disk blok from its ahe or it maysend a request to a �le system resoure.To assist the kernel-programmer, Vortex o�ers support for several onur-reny and ontinuation models for handling requests.Per-resoure bloking: Here, a resoure may temporarily suspend de-livery of requests, whih then aumulate at their original request queues. Un-bloking an be done by another resoure or by delivery of an interrupt request.This struture is useful for implementing drivers for i/o devies, whose apaitymay be oasionally exeeded by the �ow of requests.Per-request bloking: When only some requests require bloking, per-request bloking is more appropriate. Consider, for example, a File Cahe Re-soure that ontains some of the requested disk bloks but not others, requiringa feth from a �le system resoure. To support suh situations, the toolkitintrodues a pending queue. When a resoure needs to blok an inoming re-quest until it reeives a reply to its outgoing request, the resoure an plae theinoming request into the pending queue and attah a trigger to the outgoingrequest. Triggers point to one or more requests in the pending queue. Resouresare required to inlude the trigger in their reply to a request, so the toolkit anunblok the referened request automatially when the reply arrives. Multiplerequests an be assoiated with the same trigger, allowing multiple requestsfrom the same ativity to be unbloked simultaneously.Expliit ontinuations: In resoures with several potential blokingpoints, per-request bloking may ause redundant re-exeution of ode after un-bloking (sine exeution always starts at the beginning). For example, in theVortex ext2 �le system resoure, a request may have to be bloked three times,15



ausing instrutions leading up to the �rst bloking point to exeute eah time.To help avoid suh redundant re-exeution, our system allows bloked requeststo arry a pointer to a handler routine that resumes exeution after unbloking.Cooperative threading: When a resoure uses expliit ontinuationswith a large number of bloking points, the ode is split into many funtionswithout a lear ontrol �ow between them. Cooperative threading allows pro-grammers to use bloking operations in resoures by saving and reovering thestate behind the senes. To use it, a resoure would typially spawn for eahrequest a separate thread, whih would exeute for as long as the request isbeing proessed.4 EvaluationVortex is implemented in C and, exluding devie drivers, omprises approxi-mately 70000 lines of ode. The system runs on x86-64 multi-ore arhitetures.The questions we hoped to answer in our evaluation of Vortex were:1. Is all resoure onsumption aurately measured?2. Is resoure onsumption attributed to the orret ativity?3. Does the arhiteture permit su�ient ontrol for shedulers to isolateompeting ativities?In all experiments, Vortex was run on a Dell PowerEdge M600 blade serverwith two Intel Xeon E5430 Quad-Core proessors. Cores run at 2.66GHz, haveseparate 64x8 way 32KB data and instrution ahes, and, in pairs, share a6MB 64x24 way ahe (for a total of 4 suh ahes). Eah proessor has a1333MHz front-side bus and is onneted to 16GB of DDR-2 main memoryrunning at 667MHz. Through its PCIe x8 interfae, the server was equippedwith two 1Gbit Broadom 5708S network ards. And, to the integrated LSISAS MegaRAID ontroller, two 146GB Seagate 10K.2 disks were attahed andset up in a raid 0 (striped) on�guration.To generate load, we used a luster of blade servers running Linux 2.6.18.These were of the same type and hardware on�guration as the server runningVortex, and they were onneted to the Vortex server through a dediated HPProCurve 4208 Gigabit swith.4.1 Measurement tehniqueUsing a system all interfae, a proess an obtain data on its own performaneand, subjet to on�gurable aess rights, the performane of other proesses inthe system. These performane data are obtained from shedulers through aninterfae that they are required to support (shown in Table 3 of the Appendix).For eah lient of a sheduler, the data inludes attributed pu and memoryonsumption and, if used, onsumption as attributed by the sheduler usingother performane metris. 16



For most experiments, we obtained performane data by running a dediatedproess on Vortex. This proess was granted full aess to all performane datain the system and exported this data upon request using tp. External toVortex, a sript ommuniated with the proess, olleting samples one perseond. The size of eah sample was around 100KB; whenever possible, thesript aessed a network interfae ard not atively used in an experiment.When a proess performs a system all to obtain performane measure-ments, Vortex returns measurements timestamped with the urrent value ofthe pu timestamp ounter register of ore 0. These timestamps orrelate pumeasurements with elapsed time; disrepanies reveal unattributed pu on-sumption. Retrospetive attribution ompliates things. Some samples indi-ate under-attribution while others indiate over-attribution, if there is ongoingresoure-onsumption when the samples are obtained. Data auray, however,is bounded by the onsumption inurred by proessing one request message.Most messages an be proessed by the pu in a few miroseonds, ausingauray to be in the same order. Thread-ready messages, however, may leadto several milliseonds of uninterrupted pu onsumption. The auray ofperformane data pertaining threads and the overall pu-time onsumption onores that run threads depends upon hoie of thread timeslies. For example,with thread timeslies set to 5 milliseonds, the expeted auray is ±0.5% forindividual samples. We veri�ed that our measurements are in agreement withexpeted auray by performing a series of experiments with a proess runningone pu-bound thread per ore and varying the duration of timeslies. In these,we found no samples to be outside expeted auray.Individual samples may be inaurate, but under-attribution in one sample isompensated for in the next sample. Thus, for a series of onseutive samples, adeviation between resoure availability and attribution larger than the expetedauray of an individual sample indiates that some onsumption is not beingproperly aounted for. In the aforementioned experiments, omparing the sumof elapsed to the sum of attributed yles shows the number of unaountedyles to be within the expeted auray of individual samples. For example,in one experiment, over 100 seonds, a total of 86, 028, 592 yles were notaounted for (0.004% of elapsed yles). This was within the expeted aurayof an individual sample (±106, 400, 000 yles).During an experiment, we ensured that the only proesses running on Vortexwere those involved in the experiment itself. We ran eah experiment 10�20times to verify the preision of performane data; deviations were found to bewithin the auray of individual samples. For larity, we therefore do notinlude error bars in �gures. Also, for ease of visual interpretation, some �gureswere produed using Gnuplot with the dgrid3d ommand6.6In dgrid3d mode, grid data points represent weighted averages of surrounding data points,with loser points weighted higher than distant points.
17
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Figure 8: pu utilization running three pu-bound proesses with 50%, 33%,and 17% pu entitlement and pu multiplexors on�gured with wfq shedulers.4.2 Attributing CPU onsumptionTo evaluate whether pu onsumption is being attributed to the orret ativity,we onduted an experiment involving three pu-bound proesses. Eah proessran one pu-bound thread per ore. Reall from Setion 3.4 that threads areimplemented by the Thread Resoure (tr). The tr drives the exeution ofthreads by proessing the request messages sent to it when a thread enters theready state. Proessing a message involves setting up a timeslie timer anddispathing the orresponding thread. To isolate proesses, Vortex reates onetr instane per proess. Eah tr instane operates with a separate shedulerthat manages threads belonging to a orresponding proess7.In the experiment, pu multiplexors use a weighted fair queueing (wfq)sheduler and assign weights to tr instanes of the proesses aording to a
50%, 33%, and 17% entitlement. For the tr shedulers, we used a simpleround-robin sheduler with a load sharing algorithm thereby ensuring that pro-ess threads run on separate ores (i.e. pu multiplexor bindings with in�niteduration and initial binding always assigned to the ore with the least numberof threads bound to it). Figure 8 illustrates the resulting pu utilization: thepu multiplexor wfq sheduler on eah ore allots pu time to tr shedulers,whih in turn exeute proess threads, in strit aordane with the desired
50%, 33%, and 17% entitlement.7This avoids senarios where, for example, a proess reates lots of threads in order toinrease sheduling overhead for other proesses.18



Figure 9: Resoure grid on�guration for the �le read experiment.4.3 Attribution and isolation under ompetitionThe previous experiment does not establish whether pu onsumption is or-retly attributed when a resoure reeives requests from multiple independentativities.To evaluate attribution-auray when a resoure proesses requests fromindependent ativities, we onduted an experiment with three proesses per-forming �le reads. The proesses eah ran one thread per ore, with threadsprogrammed to onseutively open a designated �le, read 32KB of data, andthen lose the �le. To perform a read, three resoures are involved8 (in additionto the tr instanes): the Address Spae Resoure (asr), Asynhronous i/oResoure (aior), and the File Cahe Resoure (fr).Due to the few �les involved, the experiment is pu-bound. And sinethreads await the ompletion of one read operation before performing another,throughput is dependent on the amount of pu available to the threads and thethree resoures involved.In the experiment, we on�gured a resoure grid, as illustrated in Figure 9,with separate wfq shedulers for the asr, aior, and fr resoures. pu on-sumption was used as a metri. pu multiplexors had wfq shedulers, whereshares gave the three resoures a minimum of 50% of pu resoures (sharedequally among themselves). The remaining pu resoures were assigned to pro-esses aording to a 50%, 33%, and 17% entitlement. The same entitlementwas used for the proesses at the asr, aior, and fr shedulers.Figure 10 shows pu utilization at the di�erent resoures involved in theexperiment. We see that the bulk of pu onsumption is by the threads (ap-proximately 45 + 30 + 15 ∼= 90%). This is due to how Vortex implements the8After the �rst read operation the target �le is ahed in memory by the fr. Thus, inthe following we ignore any other �le system related resoures.19
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Figure 10: Breakdown of pu utilization.posix asynhronous i/o api�Vortex avoids opy operations on the i/o path,making read data available to a proess through a read-only memory mapping.For the reeiving thread, data is opied into the bu�er spei�ed in the aioontrol blok desribing the operation.Figure 11 shows a breakdown of the relative pu utilization attributed to theproesses at all resoures and the threads. From Figure 11(a) we onlude thatpu multiplexor wfq shedulers operate as expeted; threads aurately reeiveexess pu resoures, i.e. entitled resoures not used by the asr, aior, or fr,proportionally to their 50%, 33%, and 17% entitlement. The pu resouresavailable to the threads translate into a orresponding pu onsumption at theasr, aior, and fr resoures, as shown in �gures 11(b)�(d).So, the experiment not only demonstrates that resoure onsumption is a-urately measured and attributed (goal 1 and 2 of Setion 4), but also that theshedulers have su�ient ontrol to isolate among ompeting ativities (goal 3of Setion 4).4.4 Web server workloadsWe further investigate attribution and isolation under ompetition by onsider-ing an experiment with (1) shedulers using metris other than pu time (byteswritten and read), (2) resoure onsumption that is inherently unattributable atthe time of onsumption (paket demultiplexing and interrupt proessing), and(3) an i/o devie rather than the pu as a bottlenek to inreased performane.The experiment also exerises a larger number of resoures and represents amore realisti situation than the miro-benhmarks disussed above.20
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(a) Thread Resoure.
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(b) File Cahe Resoure.
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() Asynhronous I/O resoure.
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(d) Address Spae Resoure.Figure 11: Breakdown of relative pu utilization.Web server software thttpd9 was run, with modi�ations to exploit Vor-tex's asynhronous i/o api and event multiplexing mehanisms. thttpd issingle-threaded and event-driven. To generate load to the web servers, we ranApaheBenh10 on three separate Linux mahines. On eah mahine, ApaheBe-nh was on�gured to generate requests for the same 1MB stati web page re-peatedly and with a onurreny level of 16. Prior to the experiment, testingrevealed ApaheBenh ould saturate a 1Gbit network interfae even from asingle mahine. The three Linux mahines ould together generate load well inexess of network interfae apaity.Table 1 lists the Vortex resoures used by the web servers. By default,Vortex manifests a network devie driver as two resoures: the Devie WriteResoure (dwr) and the Devie Interrupt Resoure (dir). In the ase of anetwork interfae ard (ni) driver, insertion of pakets into the transmit ring isperformed under the auspies of dwr. Transmit-�nished proessing and removalof reeived pakets from the reeive ring is handled by dir.dir reeived pakets, in the form of request messages, are sent to the NetworkDevie Read Resoure (ndrr) for demultiplexing. By inspeting paket headers,ndrr determines whether a paket is destined for an open tp onnetion, is a9http://www.ame.om/software/thttpd/thttpd.html10http://www.apahe.org/ 21



Table 1: Resoures used in web server experiment.Resoure DesriptionDevie Interrupt Resoure (DIR) NIC interrupt proessingDevie Write Resoure (DWR) Insert pakets into NIC tx ringNetwork Devie Write Resoure (NDWR) Insert ethernet header into paketNetwork Devie Read Resoure (NDRR) Demultiplex inoming paketsTCP Resoure (TCPR) Proess TCP paketsTCP Timer Resoure (TCPTMR) Proess TCP timersAsynhronous i/o Resoure (AIOR) Orhestrate asynhronous i/oFile Cahe Resoure (FCR) File ahingAddress Spae Resoure (ASR) Address spae mappingssyn paket targeting a onnetion in the listen state, or is a paket that shouldbe dropped. If a tp onnetion is found, then the paket is sent to the tpResoure (tpr) for further proessing. Note that proessing by both dir andndrr is onsidered infrastruture; the ativity to attribute is determined byndrr as part of demultiplexing. Also note that there is no separate ip resoure.Sine ip ode is used only in onjuntion with reating tp or udp paketheaders, ip is aessed diretly instead of manifested as a resoure.As desribed in Setion 3.1.1, resoures assign request a�nity labels to giveshedulers hints about pu multiplexor preferenes, and they assign dependenylabels to ontrol request-proessing order. When a paket is removed from theni reeive ring, an a�nity and dependeny label are assigned to the request.ndrr and tpr both aess �elds in the paket header and the tp ontrolblok. So for performane reasons, pakets belonging to the same tp onne-tion ideally would be proessed on the same ore. tpr proessing of paketsin ni-dequeue order is not a requirement for orretness but an prevent un-neessary tp ommuniation. For example, the default poliy for tp whenreeiving out-of-order pakets is to reply with an ak paket (whih, in turn,might trigger fast retransmit). Also, the Vortex tp stak ontains the usualfast-path optimizations for in-order paket proessing.To preserve paket ordering, pakets from the same tp onnetion are as-signed the same dependeny label at intermediate resoures. Reall that thesheduler toolkit only guarantees ordering between a sending and a reeivingresoure. To ensure that pakets are proessed on the same ore, idential de-pendeny labels are assigned aross all intermediate resoures.For inoming pakets, the dir determines dependeny labels by inspetingpaket headers and omputing a hash of the sending and reeiving ip addressesand tp ports. The omputed label, whih is idential for all pakets belong-ing to the same tp onnetion, is inherited by all intermediate resoures. Ifpaket proessing reates a new tp onnetion, then that label is stored in thetp ontrol blok and attahed to any paket sent. The dependeny label is22



Figure 12: Resoure grid on�guration for the web server experiment.omputed aordingly for onnetions reated by proesses running on Vortex.In the experiment, we on�gured pu multiplexors with wfq shedulers.Resoures at eah pu multiplexor were on�gured with a 50% entitlement(shared equally among themselves), with the remaining apaity split amongweb servers aording to a 50%, 33%, and 17% formula. Sine the web serversare single-threaded, they only draw pu resoures from one ore. To promoteompetition, we on�gured tr shedulers with a load sharing algorithm thatseleted the same pu multiplexor for all threads (ore 7). The resoure grid,shown in Figure 12, was on�gured with separate wfq shedulers for eah re-soure. At eah resoure sheduler we on�gured the infrastruture ativity witha 50% entitlement, with the remaining split among the web servers aording toa 50%, 33%, and 17% formula. Furthermore, shedulers were on�gured to usepu onsumption as a metri, exept for the ndrr, ndrw, and dwr shedulerswhih were on�gured to use bytes transferred. The dwr resoure is instru-mented to emit a resoure reord whenever a write operation is aepted by theunderlying driver (i.e., a paket suessfully inserted into the ni transmit ring).Likewise, the dir emits a resoure reord when a read operation ompletes.In Vortex, a resoure with insu�ient apaity rejets a request. Uponrejetion, the sheduler toolkit plaes the orresponding resoure in a suspendedstate and requeues the rejeted request in the originating queue. Until resumed,no new requests are sent to the resoure. For the ni in our system, dwr rejets23
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Figure 13: Bytes written at the dwr resoure.a request if the ni's single transmit ring is full, after whih dwr remainssuspended until dir has performed write-ompletion proessing. dwr apaityis limited by the speed at whih the ni an opy pakets from the transmit ringto the network. Moreover, sine aess to the ni transmit ring is serialized bya lok, only a single ore an insert pakets at any given time. Thus, on�guringthe dwr to request pu from multiple pu multiplexors would only result inexessive ontention on the ni lok and not in inreased apaity. For thisreason, we on�gured the dwr sheduler to request pu only from a singlepu multiplexor (ore 6). Even when the ni is running at full apaity andthe dwr is frequently suspended awaiting dir proessing, dir proessing islikely to overlap with attempts to insert pakets into the transmit ring. Thus,dir proessing is best performed on the same ore as dwr to avoid ni lokontention11.Figure 13 shows how network bandwidth is shared at the dwr resoureduring our experiment. The demand for bandwidth generated by ApaheBenhis the same for all web servers. However, the atual bandwidth onsumed byeah web server depends on its entitlement, as we desired. Moreover, note thatthe total bandwidth onsumed is lose to the maximum apaity of the ni,on�rming that the workload is i/o bound.Figure 14 breaks down pu utilization aross the involved resoures. For thisworkload, 28.3% of available pu yles (the equivalent of 2.26 ores) is on-sumed. Not surprisingly, the bulk of pu onsumption is by tp and resoures11When dir proessing runs on a di�erent ore from the dwr, we measured an overall
5.5% inrease in pu onsumption. Lok pro�ling further showed that the inrease was allattributable to ni lok ontention. 24



downstream. Consumption of 14.24% of available pu yles (the equivalentof 1.13 ores) an be attributed to infrastruture. Of this, 7.2% (0.58 ores) isinterrupt (i.e. dir) proessing and the remainder is paket demultiplexing (i.e.ndrr proessing). dir proessing takes plae on ore 6; ndrr proessing isload-shared among ores due to a�nity label assignment. Observe that dwrproessing has a relatively �xed ost; when ni operates at maximum apaity, arelatively onstant number of pakets needs to be transmitted (where the exatnumber depends on tp dynamis). In ontrast, the ost of interrupt proessingis heavily in�uened by the frequeny of interrupts, whih is bounded by therate at whih pakets are removed from the ni transmit ring (i.e. at most oneinterrupt per paket sent). (The number of interrupts due to pakets reeivedhas the same bound, but a ni operating at maximum transmit and reeiveapaity is not likely to inrease interrupt frequeny sine the driver would o-alese reeive with transmit proessing. And the ni in our system does nothave separate interrupt vetors for transmit and reeive.)In the experiment, ores were measured to operate at approximately 15±3%utilization, whereas ore 6 operated at 100%. Core 6 might appear to be abottlenek, but Figure 13 shows that the ni is operating at maximum apaity,as desired. On ore 6, 28% of utilization is due to dwr proessing, 58% dirproessing, and the remaining is due to other resoures. Sine the ni usesmessage-signaled interrupts, interrupts an be delivered with low lateny andat a rate mathing paket transmission. For this experiment, the dir proessesapproximately 7300 interrupt messages per seond. In ontrast, tp transmitsapproximately 82000 pakets and reeives 24000 inoming pakets per seond.Thus, overhead related to removal of sent pakets from the ni transmit ringis amortized over approximately 11 pakets on average. Reduing the loadon ore 6 would only result in more frequent serviing of interrupts, leadingto more frequent interrupts, whih in turn inreases pu onsumption. Weexperimentally veri�ed this feedbak e�et by only running the dir and dwron ore 6. Its load stayed at 100%. The slightly redued per-interrupt overheadwas subsumed by the inreased number of interrupts.Vortex requires resoures to handle onurrent exeution of requests. Inour implementation, we use spin-loks to preserve invariants on shared state.For this experiment, an average of 1, 770, 000 lok operations are performed perseond. The majority protet request queue operations. Lok pro�ling did showsome lok hotspots, indiating a need to re-visit synhronization approahes,but overall lok ontention in this experiment was found to be low (i.e. few puyles are spent busy-waiting on loks).Despite low lok ontention, the aggregated overhead of lok operations issigni�ant. For the hardware we are using, obtaining and releasing a lok whenthe operation an be exeuted internally in a ore's ahe involves approximately
210 pu yles. In pratie, due to the need for inter-ore ommuniation whenperforming lok operations, pro�ling shows the average loking overhead to be
738 pu yles. In total, 22.2% of onsumed pu yles are attributable toloking overhead and ontention. In ontrast, had all loking operations beenexeuted internally in a ore's ahe, only 6.3% of onsumed pu yles would25
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Figure 14: Breakdown of pu onsumption.have been attributable as suh. The latter is to some extent optimisti, butundersores that synhronization is ostly in a multi-ore environment.4.5 File system workloadsWe ontinue by onsidering an experiment involving �le i/o. Similar to theweb server experiment above, this experiment involves shedulers using bytestransferred as a metri, interrupt proessing, and an i/o devie as a bottlenekto inreased performane. The experiment di�ers by (1) introduing a foreignsheduler outside diret ontrol of Vortex (the disk ontroller �rmware shed-uler), (2) i/o devie apaity that �utuates depending on how the devie isaessed (i.e. whih disk setors are aessed and in what order), and (3) i/orequests of markedly di�erent sizes12.The experimental design involved three proesses performing �le reads. Theproesses eah ran one thread per ore, with threads programmed to read on-urrently from 32 di�erent, 2MB, �les. Eah �le was onseutively opened,read using 4 parallel streams from non-overlapping regions, and then losed. Toensure that the experiment was disk-bound, eah �le was evited from mem-ory ahes after it had been read13. Eah proess thus maintained onurrentread operations from 256 di�erent �les, for a total 768 �les altogether. Before12Before optimizations performed by the disk ontroller �rmware, Vortex employs an op-timization whereby i/o to adjaent bloks is oalesed. This is an optimization employed bymost operating systems. Vortex restrits the optimization to requests belonging to the sameativity and limits the resulting requests to enompass transfer of at most 32KB of data.13Vortex supports �ne-grained management of ahed �les; mehanisms an reate hek-points of the �le system and evit �le state at the granularity of individual �les or aggregatesof �les used by spei� ativities. 26



Table 2: Resoures used in �le system experiment.Resoure DesriptionDevie Interrupt Resoure (DIR) Interrupt proessingDevie ReadWrite Resoure (DRWR) Insert read or write requestsStorage Devie ReadWrite Resoure (SDRWR) Bu�er translationsSCSI Resoure (SCSIR) SCSI messsagesStorage Resoure (SR) Export disk volumesEXT2 Resoure (EXT2R) Ext2 �le systemFile Cahe Resoure (FCR) File ahingAsynhronous i/o Resoure (AIOR) Orhestrate asynhronous i/oAddress Spae Resoure (ASR) Address spae mappingsthe experiment was started, an empty �le system was reated on disk and �leswere then reated and syned to disk. Files were reated onurrently to avertsequential �le blok plaement on disk14.Table 2 lists the Vortex resoures used by the proesses. Vortex manifests astorage devie driver as two resoures: the Devie ReadWrite Resoure (drwr)and the Devie Interrupt Resoure (dir). Insertion of disk read/write requestsis performed by drwr and request �nished proessing is handled by dir. TheStorage Devie ReadWrite Resoure (sdrwr) interfaes the storage system withdrwr. In partiular, sdrwr translates between storage-spei� request anddata-bu�er representations and the representations that are used by all Vortexdevie drivers15. Sine the disks in our system were ssi-based, all requestspassed through the ssi Resoure (ssir) for the appropriate ssi message re-ation and response handling. ssir is situated upstream of sdrwr and down-stream of the Storage Resoure (sr). sr abstrats di�erenes in disk tehnologyby providing a naming sheme and a general blok-based interfae to a disk ordisk volume. For example, after ssir has probed the underlying ssi topology,disovered disks and raid volumes are registered with sr as storage volumes,whereby a �le system an be assoiated with them or raw aess an be madeby e.g. �le system reation and reovery tools. The Ext2 Resoure (ext2r)is upstream of sr and implements the Ext2 �le system on a storage volumeprovided by sr. The File Cahe Resoure (fr) initially reeives �le operationsand ommuniates with ext2r to retrieve and update �le meta-data and data.To ensure a onsistent state on disk, �le systems typially restrit how diskrequests an be ordered after sent. ext2r uses dependeny labels to satisfy itsordering onstraints. Requests involving bloks that are private to a �le (i.e. diskblok table and data bloks) are assigned the same dependeny label by ext2rand intermediate resoures, ausing requests to arrive at the disk in the order14A sequential �le blok plaement would result in the majority of disk requests to be ofthe same size due to oalesing of reads to adjaent bloks.15Vortex de�nes a general request and data-bu�er interfae that all devie drivers mustadhere to. 27



sent16. Note that ext2r assoiates the originating ativity with these requests;external synhronization protools are assumed when di�erent ativities overlapi/o to a �le. For bloks ontaining information pertaining to multiple �les (i.e.inode bloks and free inode- and free-bitmap bloks), ext2r assoiates theinfrastruture ativity with requests and assigns dependeny labels similarly toprivate bloks. Use of the infrastruture ativity is needed for onsistent stateon disk17, beause the toolkit only guarantees ordering for requests belongingto the same ativity.In the experiment, pu multiplexors were on�gured with wfq shedulers.The resoure grid was on�gured with separate wfq shedulers for eah re-soure. Resoures were given a 50% entitlement at eah pu multiplexor, withthe remaining apaity split among the proesses aording to a 50%, 33%, and
17% formula. The infrastruture was given a 50% entitlement at eah resoure,with the remaining split among proesses aording to a 50%, 33%, and 17%formula. Shedulers for resoures downstream of fr were on�gured to usebytes transferred as a metri, sine, for these types of resoures, pu onsump-tion is not representative of atual resoure onsumption (see Setion 2.2). Forthe same reasons as those outlined in the web server experiment above, drwrand dir were on�gured to request pu from a single ore (ore 6). The disk�rmware was on�gured to handle up to 256 onurrent requests to allow ampleopportunities for �rmware to perform optimizations.Figure 15 shows how disk bandwidth is shared at the drwr resoure duringthe experiment. Beause disk apaity varied aross runs due to hanges in �leblok plaement, the �gure shows relative bandwidth onsumption for the threeproesses. The demand for bandwidth is the same for all three proesses, butas desired and seen, atual allotment depends on entitlement.Figure 16 breaks down pu utilization aross the involved resoures. Forthis workload, only 0.99% of available pu yles (the equivalent of 0.08 ores)is onsumed, whih learly shows that the disk is the bottlenek to improvedperformane.5 Related work5.1 Sheduling CPUOne Vortex objetive is to provide a �exible framework for shedulers thatsupports a wide variety of poliies. Prior work has also explored support formultiple, oexisting sheduling poliies. In ontrast to Vortex, the fous ofthat work was guaranteeing pu yles for proesses. Of partiular relevaneto Vortex is work that investigates interation between shedulers organized16Software-based request ordering to redue disk head movement might result in a di�erentdisk-arrival order, but, similar to optimizations performed by disk �rmware, the ordering mustsatisfy onsisteny models.17The File Cahe Resoure guarantees that no reads or writes are in progress when sending arequest to ext2r that involves �le meta-data updates. This relieves ext2r from implementinglogi for synhronizing pending reads or writes with meta-data updates.28
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fshog17Figure 15: Bytes read at the drwr resoure.in a hierarhy, beause of the similar hierarhial relationship between pumultiplexors and resoure shedulers.Goyal et al. [28℄ present one of the �rst hierarhial sheduling systems thatallows di�erent algorithms for di�erent appliations. The system uses a fairqueuing algorithm at all levels of the sheduling hierarhy, exept for the leafnodes. Leaf nodes may implement arbitrary sheduling poliies, muh like theThread Resoure shedulers in Vortex. The open environment for real-timeappliations [19, 20℄ and bssi [40℄ restrit the number of levels in the hierarhyto two, and these systems rely on an earliest deadline �rst (edf) sheduler atthe root to resolve timing onstraints of appliation shedulers. RED-Linux [65℄de�nes sheduling needs of tasks in terms of attributes, whih may be adjustedto express di�erent real-time poliies (edf, rate monotoni, et.). Coneptuallythis de�nes a two-level sheduling hierarhy.pu inheritane sheduling [27℄ allows onstrution of arbitrary shedulinghierarhies by designating ertain threads as sheduler threads and other threadsas lient threads. Sheduler threads implement sheduling poliies by donatingpu time to lient threads. A lient thread an, in turn, at as a sheduler threadby donating its pu time to other threads�a onept originally introduedin [17℄. pu inheritane sheduling an be viewed as a generalization of shedulerativations [1℄, only extended with parts of the sheduling hierarhy residing atkernel-level (although, the original pu inheritane work only desribes a user-level implementation). Nemesis [30℄, Aegis [24℄, and spin [8℄ all implement two-level sheduler hierarhies with interfaes similar to that of sheduler ativations.Nemesis and Aegis require all seond-level shedulers to run at user-level anduse a �xed sheduler at the root of the hierarhy; spin allows appliations todownload their own shedulers into the kernel at run-time.Hierarhial loadable shedulers [55℄ (hls) and Vassal [13℄ both allow a29
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Figure 16: Breakdown of pu onsumption.sheduler, downloaded into the kernel at run-time, to ontrol sheduling of avail-able threads. Vassal only allows a single sheduler to o-exist with the nativeWindows NT sheduler; hls allows arbitrary sheduler hierarhies in Windows2000. The hls authors observe that i/o ativities severely a�et the e�etive-ness and auray of their pu sheduling. This problem is expliitly addressedin Vortex, beause it was designed to enfore poliies for both pu and i/oonsumption.5.2 Sheduling CPU and other resouresMost operating systems have well-de�ned interfaes for alloating pu time tothreads or proesses, and the sheduling algorithms may be modi�ed in a rela-tively straightforward manner. In ontrast, there is a multitude of frameworksand mehanisms for ontrolling onsumption of other resoures. The Linux ker-nel uses timers, allouts, threads, and subsystem-spei� frameworks to dispathwork on behalf of appliations. As a result, work that aims to make all resoureonsumption shedulable in an existing system must overome the disparitiesof a diverse set of mehanisms. If only ertain resoures are made shedulable,then inevitably there will be be ways to irumvent poliy enforement. Forexample, if only network bandwidth is sheduled, then a web server ould bepreluded from reahing its potential throughput by another disk-bound ap-30



pliation. In the remainder of this setion, we highlight work that proposesentirely new frameworks for resoure sheduling, has attempted to retro�t suhsheduling into an existing system, or started with a lean slate but did nothave resoure sheduling as their primary goal.The Lottery resoure management framework, originally developed for Lot-tery Sheduling [64℄, introdues a tiket and a urreny abstration. A tiketenapsulates a lient's resoure rights; an ative lient is entitled to onsumeresoures in proportion to the number of tikets it holds. A tiket may be trans-ferred between two lients via a tiket transfer. Tiket transfers provide thebasis for implementing diverse resoure management poliies. In [59℄ and [60℄,the Lottery resoure management framework was extended for absolute resourereservation. Only pu sheduling was demonstrated before the work in [60℄,where disk requests and memory alloation sheduling within a Lottery frame-work was demonstrated.Proessor Capaity Reserves [45℄ was developed to support the pu shedul-ing needs of proesses that handle time-onstrained data types, suh as digitalaudio and video. The work allows proesses to make periodi reservations ofpu resoures; an edf sheduler ensures that sheduling is onsistent with reser-vations. edf shedulability serves as an admission ontrol mehanism for newreservation requests. At kernel-level, a reserve abstration traks and ontainsthe pu usage of a proess during a sheduling period. The pu onsumptionof all threads belonging to a proess is measured and harged to the reserve as-soiated with the proess. Threads that exeed the apaity of a reserve whileexeuting in a non-preemptible part of the kernel are penalized in the nextperiod. To aount for resoure usage that spans multiple address spaes, e.g.when a thread invokes a servie o�ered by another proess, a thread's assoiatedreserve an be propagated and used by the server threads performing work onits behalf (similar to the Lottery framework, migrating threads in Mah [26℄,and shuttles in Spring [29℄).Resoure Kernels [50,53℄ extends the Capaity Reserve work to inlude oper-ating system enfored reservation of resoures other than the pu. Reservationand use of multiple resoures is deoupled, and proesses are subjet to separateadmission ontrols for eah resoure reservation request. Reservation of pu re-soures for the user-level threads involved in paket proessing in RT-Mah isdesribed in [38℄. Expliit reservation and sheduling of network bandwidth ismentioned as a feature in [50℄, but no implementation details are given. Reser-vation of disk bandwidth based on a hybrid of edf and a traditional sanalgorithm is desribed in [46℄. Resoure Kernels is primarily onerned withenforing reservations within RT Mah, so all enforement of reservations takeplae at user-level. The messages sent between servers in suh a miro-kernelsystem resemble the requests sent between Vortex resoures. Thus, it is possiblethat �ne-grained sheduling of the proessing for these messages ould yield agranularity of ontrol resembling that found in Vortex. Assuming suh shedul-ing, the problem of ameliorating overhead still remains; dispathing a messageto a resoure in Vortex is a low-ost operation, whereas a similar dispath in amiro-kernel system typially entails an address spae swith. Resoure Kernels31



also base enforement of reservations on real-time sheduling of threads (withthe exeption of how disk bandwidth is multiplexed), and therefore only usespu onsumption as a metri for sheduling.Elipse is an operating system developed at Bell Laboratories [9�11℄. Thegoal of Elipse is to explore quality of servie support for multimedia appli-ations. Elipse has been implemented in Plan9 [52℄ and as an extension toFreeBSD. Elipse is built around a reservation-domain abstration, to whihsystem resoures suh as pu, disk, network, and physial memory are pro-visioned. Proesses in Elipse reeive resoures by attahing themselves to areservation domain. Domains inlude a separate proportional share shedulerfor eah attahed resoure. The Plan9 version of Elipse shedules i/o by in-terepting read and write system alls, subjeting the requests to a shedulingsheme similar to weighted round-robin. Coneptually, Elipse enfores i/oresoure reservations through an arhiteture that is similar to Vortex: bothsystems rely on plaing i/o requests in queues and use a sheduler to deidewhen to remove a request from a partiular queue. However, Elipse only per-forms sheduling at the level immediately above a physial resoure. Thus,Elipse does not shedule intermediate kernel-level ativity (e.g., vfs ativity,�le system ativity, logial volume management, et.).Elipse employs a domain-spei� approah to making network ommunia-tion shedulable: the signaled reeiver proessing mehanism [12℄. The approahis to demultiplex network pakets before network protool proessing, using theonventional unix signal mehanism to shift protool proessing to the ontextof the reeiving proess. Whenever a network paket arrives, the destinationproess is sent a signal; further paket proessing ours in the signal handler(with the help of a speial system all). A weakness is the assumption thatinitial proessing of outgoing network tra� takes plae in the ontext of thealling proess (and is not triggered in response to the reeipt of pakets). Whenusing the unix soket api this assumption holds, but not when using kernel-supported apis for asynhronous i/o (suh as the ones in newer versions ofLinux and FreeBSD). The deision to only support an asynhronous i/o api inVortex is rooted in this observation; when a proess rosses into the kernel aspart of a system all, further proessing is asynhronous by means of sendingshedulable messages.Rialto is an operating system developed at Mirosoft Researh [22, 33�35℄.The goal was is to build a system in whih real-time proesses and traditionaltime-sharing proesses oexist and share resoures on the same hardware plat-form. The primary unit of exeution in Rialto is an ativity. Multiple threadsin potentially di�erent address spaes may be assoiated with the same ativity,and ativities are guaranteed a minimum exeution rate by making pu reserva-tions. The Rialto sheduler makes deisions based on traversal of a preomputedsheduling graph. The ost of serviing interrupts is harged to the node ativewhen an interrupt ours. Starvation of non real-time proesses is prevented byreserving some pu time that annot be reserved by ativities.Rialto server threads assume the pu reservation for lient threads they aresupporting. In addition to long-term pu reservations, Rialto supports short-32



term deadline-based exeution of proess ode segments. These onstraintsare submitted by threads before starting exeution of ode that is partiu-larly time ritial. Rialto is primarily onerned with the sheduling of putime to threads. So Vortex provides a more general solution to the problemof resoure management. However, [33, 34℄ outline a framework for shedulingother resoures. This extended/improved framework is based on entralized re-soure planners; but no details have been published regarding the enforementof resoure grants.Nemesis, developed at the University of Cambridge [39℄, supports a mix oftime-sensitive proesses and onventional proesses with the goal of preventingQoS rosstalk. QoS rosstalk is de�ned as the ontention that results when dif-ferent streams are multiplexed onto a single lower-level hannel. Nemesis takesa very di�erent approah to system struture than Vortex in order to ahievethese goals, moving as muh operating system ode as possible into user-levellibraries. This reloation of funtionality makes it easier to aount for proessuse of operating system servies. Cahe Kernel [16℄ and the Exokernel [24, 36℄systems employ something similar.Central to Nemesis is the onept of domains. A domain is the analogue of aproess. Eah domain has an assoiated sheduling domain, whih is the entityto whih pu time is alloated, and an assoiated protetion domain, whihde�nes aess rights to virtual memory. Nemesis domains reside at di�erentloations in the same virtual address spae. In ontrast, Vortex is not a singleaddress spae operating system.The Nemesis sheduler aims to provide domains or sets of domains with aprespei�ed share of the pu over a short time frame. The Nemesis sheduler,Atropos, uses edf to aomplish this goal. To aommodate lateny-sensitivedomains, suh as those ontaining a devie driver that needs to reat to aninterrupt, the deadline of the domain is dynamially shortened when needed. Toavoid QoS rosstalk in onjuntion with paging, Nemesis requires every domain(appliation) to be self-paging [30℄. Self-paging implies that eah domain hassome ontrol over whih of its virtual pages are baked by physial frames. Inpartiular, a domain is responsible for handling its own page faults. If Nemesis�nds it must relaim frames from a domain, then the domain is noti�ed aboutthe number of frames it must release in a given time. Appliation-assistedrevoation is an interesting topi that we so far have not explored in ontextof Vortex. Currently, relamation in Vortex is guided by statistis suppliedby resoure instrumentation ode. Nemesis uses a sheme similar to that ofthe user-safe baking store [5℄, only oupled with the Atropos sheduler, forproportional sharing of disk swapping bandwidth among domains.Nemesis probably ould implement the degree of resoure ontrol that Vor-tex provides. However, Nemesis laks a lear onept, aside from the Strethdriver [30℄, of how to shedule aess to i/o devies and to higher-level abstra-tions shared among di�erent domains.Sout is an operating system designed to aommodate the needs of ommuni-ation-entri systems [47�49, 58℄. A omplete Sout system is formed by on-neting individual modules into a module graph. Together, the modules in a33



graph implement a speialized servie, suh as an http server, a paket router,the environment required to run a networked amera, et. The module graphis de�ned at build time and remains �xed thereafter. Abstratly, a path inthe module graph an be viewed as a logial hannel through whih i/o data�ows within a Sout system. Eah path has a soure and a sink queue. Whendata arrives, it is enqueued in the soure queues and a thread is sheduled toexeute the path. Exeuting a path involves dequeuing data from the sourequeue, traversing the path topology, and enqueuing the (transformed) data inthe sink queue. How data arrives in the soure queue and how it is removedfrom the sink queue depends on the servie implemented by the partiular Souton�guration.The initial design of Sout did not fous on resoure management to theextent that we do in Vortex; the goal of Sout was to explore aspets of speial-ization, extensibility, and domain-spei� optimization. Still, the initial Soutdesign reognized the need for performane isolation among paths to ensurethat ertain performane riteria ould be ahieved (e.g. that a path was able todeode and display a partiular number of frames per seond in a NetTV on-�guration). However, support for performane isolation in Sout was limited toassigning pu time to path-threads aording to an edf algorithm.Esort extends Sout with better support for performane isolation amongpaths [58℄. In partiular, Esort adds support for reserving resoures for modulesthat are part of a path topology. The Sout arhiteture was later ported toLinux [7℄. By essentially replaing thread sheduling in the Linux kernel, thework showed how quality of servie guarantees ould be provided to networkpaths.Software Performane Units (spu) is a resoure management framework de-veloped for shared-memory multiproessors [62℄. The goal is to provide meh-anisms that give groups of proesses preditable performane orresponding toan assigned share of system resoures, independent of system load. The sys-tem was implemented as an extension to IRIX5.3, and it provides proportionalsharing of pu, memory, and disk bandwidth in a multiproessor system.The resoures available to an spu vary over time, always exeeding someminimum. The amount of resoures available at eah spei� time is dynamiallyadjusted based on the amount of idle resoures at that time. In ontrast to the�ne-grained pu multiplexing supported by Vortex, spus are initially alloatedan integral number of pus. An idle pu an onsider other spus for shedulingthan those alloated to it.Memory is partitioned among spus, and the system is periodially heked to�nd spus that have idle pages or that are under memory pressure. The metrifor aounting for disk bandwidth usage is the number of setors transferredper seond. Disk i/o performed by daemon proesses (e.g. swapping, �ushingthe blok ahe) is harged to a speial shared unit initially. After the i/ohas ompleted, the appropriate spu is loated and harged. Disk requests thatare diretly attributable to units are sheduled aording to a fair queueingalgorithm. The bandwidth usage of eah spu is inspeted after eah disk request,and a request from the spu that has been given the least servie relative to its34



bandwidth share is seleted.In ontrast to Vortex, the spu abstration was grafted onto an existingsystem. That is why there is suh a variety of approahes for making di�erenttypes of resoure onsumption shedulable. Also, sheduling of network tra�is not addressed in this work.The Virtual Servies framework was developed to address the problem ofQoS rosstalk between appliations in a virtual hosting environment [56℄. Thework de�nes a servie as the set of proesses, sokets, �le desriptors, and otheroperating system resoures that share one address spae. Resoures a servieuses outside its own address spae are de�ned as sub-servies. A virtual servie isan operating system abstration that provides per-servie resoure partitioningand management by dynamially assoiating a resoure binding with a servieand the sub-servies it uses. This binding is established by interepting systemalls and using a lassi�ation gate to monitor work that propagates from oneservie to another. A lassi�ation gate evaluate rules suh as: �if proess
P1 aepts a servie request from VSx, then the resulting P1 ativity should beharged to VSx�. If, after establishing a binding for a system all, a lassi�ationgate disovers that a resoure limit violation would our as a result of theall, then the all an be made to fail, blok, or exeute in best-e�ort mode.Operating system entities, suh as sokets, shared memory areas, proess ontrolbloks, are tagged with a virtual servie assoiation. This assoiation is, in turn,used by operating system funtionality to infer harging for a partiular ativity.The binding between an operating system entity and a virtual servie an hangedynamially as when the operating system disovers that a proess is operatingon a data set that belongs to another virtual servie.Virtual servies provides a sound framework for attributing resoure usage tothe orret prinipal. But from published work, it is unlear how resoure on-sumption an be ontrolled within the framework. For example, ounting andlimiting the number of sokets that an be assoiated with a vs provides littleontrol over resoure usage, as one soket alone an onsume a large proportionof the available network bandwidth.The Resoure Containers work was the �rst to learly emphasize the needto separate the onepts of protetion domains and resoure prinipals [4℄. Byintroduing the onept of a Resoure Container, the work allows for a �exiblenotion of what onstitutes an independent ativity. Essentially, any thread inthe system (subjet to aess ontrol) an harge resoure onsumption to apartiular ontainer by establishing a resoure binding to the ontainer, thusallowing an independent ativity to span multiple proesses and also inludekernel-level ativity. The ontainer framework also introdues the lazy reeiverproessing network arhiteture [23℄, whih makes network bandwidth shedu-lable in a somewhat similar fashion as signaled reeiver proessing; paket pro-essing is shifted from the ontext of allout funtions to a thread ontext.Several ommerial operating systems inlude frameworks for managementof resoures [31, 32, 61℄. Mostly, these systems fous on long-term goals forgroups of proesses or users and rely on fair-share sheduling approahes forenforement of resoure shares. Resoures that annot be replenished (suh as35



disk spae) are typially ontrolled by hard limits. The major di�erene betweenVortex and these systems is that Vortex is able to enfore isolation at a muh�ner time-sale. Moreover, these systems typially manage resoures at a muhoarser granularity and often by partitioning.5.3 Partitioning for salabilityA number of reent operating systems have explored the use of partitioningas a means to enhane multi-ore salability. The primary fous of these sys-tems has not been sheduling ontrol over resoure onsumption, although theproposed arhitetures share similarities with Vortex. Corey [67℄ is struturedas an Exokernel system and fouses on enabling appliation-ontrolled sharing.Barrel�sh [6℄ also tries to maximize salability by avoidane of sharing, but goesone step further in arguing for a very loosely oupled system with separate oper-ating system instanes running on eah ore or subset of ores�a model oineda multikernel system. Tessellation [42℄ proposes to bundle operating systemservies into partitions that are virtualized and multiplexed onto the hardwareat a oarse granularity. As in our work, Tessellation reognizes the relationshipbetween message proessing and onsequent resoure usage, and it proposes thatquality of servie an be provided by quenhing message senders to ensure thatdi�erent ativities reeive a fair share of the resoure represented by a partition.Fatored operating systems [66℄ proposes to spae-partition operating systemservies. Unlike Tessellation, whih proposes that appliations have ompleteontrol over the underlying hardware, the work argues for omplete separationof appliations and operating system servies due to tlb and ahing issues.This reent work fouses on inreased use of message passing as a means tooordinate state updates within a system. Vortex has a similar, but more �ne-grained, struture�resoures exhange messages to oordinate and implementhigher-level abstrations. Although salability has been an important onernin our work, our primary motivation has been �ne-grained and aurate on-trol over the sharing of individual resoures, suh as ores and i/o devies. Aredution in the use of shared state is a onsequene of Vortex design prini-ples, however, sine suh sharing an interfer with sheduler ontrol. Sharingbeyond reading the ontents of a message is infrequent, and if other state isaessed when a message is proessed, then it is typially state that is private tothe ativity from whih the message originates. In ases where state is sharedaross one or more ores, it is typially to oordinate use of some resoure thatis unavoidably shared, suh as the arp ahe for a network interfae, the list ofative tp onnetions, or �le system bloks ontaining multiple inodes. Unlessaess to these resoures is restrited to a partiular ore, sharing is inevitable.Vortex allows asymmetri, i.e. spae partitioned, on�gurations by design, asexempli�ed and demonstrated in Setion 4. Resoure utilization onerns di-tate that suh on�gurations should be used sparingly, however. For example,to minimize power onsumption, additional ores should not be ativated unlessalready running ores are unable to ope with the urrent load. Implementingsuh a onern is straightforward in Vortex; a sheduler an deide to load share36



to a selet set of ores depending on observed utilization.6 ConlusionVortex is a new multi-ore operating system designed aording to priniplesthat maximize sheduler ontrol over resoure onsumption when ompetingservies are onsolidated on the same hardware. The priniples ditate thatall resoure onsumption must be measured, that the resoure onsumptionresulting from a sheduling deision must be attributable to one and only oneativity, and that sheduling deisions should be �ne-grained.We argue for an arhiteture where the operating system is fatored intomultiple ooperating resoures that, through asynhronous message passing,in onert provide higher-level abstrations. By ensuring that an ativity isassoiated with all messages, aurate ontrol over resoure onsumption anbe ahieved by allowing shedulers to ontrol when messages are delivered.Vortex provides ommodity abstrations suh as proesses, threads, virtualmemory, �les, and network ommuniation, while demonstratable assuring a-urate sheduling ontrol over resoure onsumption on modern multi-ore hard-ware.APPENDIXSheduler implementationA sheduler implements a set of funtions that are invoked when relevant statehanges our in the sheduler's lients. Table 3 shows these funtions. Thetoolkit initiates reation of a new sheduler instane by invoking init(), withthe (key/value) ditionary argument shedparams supplying on�guration values.The return value from init() is a pointer to sheduler-spei� private state.For eah ore from whih a sheduler is on�gured to request pu time,init_ore() is invoked. In onnetion with this funtion, the sheduler ini-tializes state private to eah ore. The return value is supplied as the orestateargument to other funtions.Sheduler lients are request queues. New request queues are registeredas lients through add_lient() and removed through remove_lient(). Apointer to lient-spei� state is returned from add_lient() and supplied toother funtions as the lientstate argument.The toolkit, in the ontext of a pu multiplexor, obtains a sheduling de-ision by invoking shedule(), whih selets and returns a pointer to a non-empty request queue, from whih requests will be dequeued and dispathed tothe resoure governed by the sheduler.Shedulers maintain a view of all non-empty request queues (i.e. readylients) beause lient_ready() is invoked whenever a request arrives to anempty request queue and, if the orresponding queue is non-empty, after the37



Table 3: Sheduler interfae.Name Input Output Desriptioninit dit_t *shedparams void * Initialize shedulerglobal state.init_ore void *shedstate void * Initialize sheduler orestate.add_lient void *orestaterqueue_t *requestqueuedit_t *lientparams void * Register new lient.remove_lient void *orestatevoid *lientstate int Unregister lient.shedule void *orestate rqueue_t* Emit sheduling dei-sion.lient_ready void *orestatevoid *lientstate void Register that lient haspending requests.lient_suspended void *orestatevoid *lientstate void Register that lient issuspended.poll_ready void *orestate int Return µ-seonds untilsheduling deision anbe made.resoure_reord void *orestatevoid *lientstateresre_t *reord void Reord lient resoureonsumption.load_share time_t *ttla�nity_t a�nityvoid *lientstatevoid *shedstate int Deide what oreshould handle thespei� a�nity label.lient_statistis lientstat_t *statistisvoid *orestatevoid *lientstate void Return lient resoureusage statistis.toolkit has exeuted requests. A sheduler an hoose to be expliitly informedwhen an ativity is suspended (e.g., when a proess is suspended) by providing alient_suspended() funtion. This funtion allows a sheduler to di�erentiatebetween an idle and a suspended lient.The toolkit invokes poll_ready() on behalf of the sheduler to determinewhen to request pu time from a pu multiplexor. The return value indiateswhether the sheduler has ready lients and the number of miroseonds untildeisions are available (with 0 indiating immediately). Indiating future avail-ability allows a sheduler to delay a sheduling deision, even if there are readylients.After exeution of requests, the sheduler is informed of resoure onsump-tion through resoure_reord(). This funtion an be invoked repeatedly, de-pending on how the resoure is instrumented. A sheduler distinguishes reords38
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