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ABSTRACT 

Positron emission tomography is a non-invasive imaging modality allowing visualization and 

quantification of a wide variety of physiological and biochemical processes or of a specific low-

density protein target. Some examples are blood flow, glucose consumption, fatty acid 

metabolism or detection and quantification of cell surface receptors in particular tissues. Within 

the spectrum of available positron emitters, fluorine-18 is a particularly attractive radionuclide 

due to its favourable nuclear and chemical properties. One prerequisite to performing an 

investigation with positron emission tomography (PET) is the availability of suitable 

radiopharmaceuticals. The selection, preparation, and preclinical evaluation of a new 

radiopharmaceutical are addressed in particular by the field of radiopharmaceutical chemistry. 

Currently, [18F]FDG and to a lesser extent other small molecular weight compounds have become 

important clinical tracers for imaging of malignancies and other disease conditions. So far 

[18F]FDG, [18F]NaF and [18F]fluorodopa are the only three PET radiopharmaceuticals for 18F-

fluorine listed in the USP.    

Peptides labelled with 18F have emerged as promising target-specific imaging probes. To date, 

very few 18F-labelled peptides have been subjected to human studies, compared to other small 

compound based 18-fluoride tracers. The explanation for this is to a large extent the complicated 

and low yielding synthesis of 18F-peptides employed so far. 

Peptides are labile molecules containing a multitude of functional groups that are not compatible 

with the conditions where [18F]fluorine is introduced. Peptides are therefore in general labelled 

indirectly by means of 18F-labeled prosthetic groups also called bifunctional labelling agents. 

Numerous 18F-prosthetic groups have been described and utilised for labelling of peptides. The 

number of synthetic steps and the different chemistries for conjugation to the peptide are some of 

the important properties of a prosthetic group, and renders some of them unsuitable for labelling a 

wide range of peptides. Also, the synthesis time and ease of production plays an important role as 

PET involves rapidly decaying isotopes and radiation exposure to PET manufacturing 

professionals.  

In this thesis, a new 18F-prosthetic group based on the site-selective addition of the N-

methylaminooxy to different sets of model peptides functionalised with Michael acceptors and 

alkyl halides have been investigated. Two 18F-prosthetic groups were synthesised; one based on a 

butyl chain and the second with diethylene glycol unit, both modified with the N-

methylaminooxy functionality and a tosyl group for the introduction of 18-fluorine. 



 

VI 

Radiolabelling experiments showed that the diethylene glycol derivative was sufficiently stable, 

but not the butyl derivative. Both radioactive and non-radioactive experiments with peptides 

demonstrated that the 18F-prosthetic group reacted in a site-selective manner, and that peptides 

modified with Michael acceptors such as nitrostyrene, maleimide and vinylsulfone gave better 

yields and more clean reactions as compared to the alkyl halides. Further investigations of the 

prosthetic group in conjunction with an RGD peptide modified with either a nitrostyrene or a 

vinylsulfone moiety in vitro and in vivo demonstrated that a biologically active peptide can be 

radiolabelled using this methodology. In vitro experiments and in vivo studies in osteosarcoma 

tumour bearing mice gave evidence for that the 18F-N-methylaminooxy prosthetic group had good 

stability. The peptide conjugate bearing the vinylsulfone was found suitable for in vivo use, while 

the nitrostyrene analogue on the other hand was too labile. Finally, a nicotinic acid based system, 

with direct labelling of active esters was investigated. The 6-[18F]fluoronicotinic-TFP ester 

proved to be a very suitable prosthetic group that allows labelling of peptides rapidly and in two 

steps. In conclusion, new and useful 18F-prosthetic groups for labelling of peptides and 

biomolecules have been successfully developed for use in PET. 

 

 



Dag Erlend Olberg 

1 

1. INTRODUCTION 

Imaging techniques that are based on external localisation of administered radioactivity dose 

allow non-invasive and non-terminal in vivo distribution studies. Positron emission tomography 

(PET) and single photon emission computed tomography (SPECT) are such imaging techniques 

(Jones, 1996; Lammertsma, 2001; Mountz et al., 2002). Tracing of the in vivo localisation of the 

labelled molecule over time provides information of uptake, distribution, excretion and residence 

time in tissue (Phelps, 2000). PET and SPECT therefore supply functional information in contrast 

to the non-radioactive modalities such as CT (X-ray computed tomography), MR (Magnetic 

resonance tomography) and ultrasound (US). Kinetic modelling obtained by PET or SPECT are 

difficult to provide by means of other modalities. 

1.1 Positron emission tomography 

Radionuclides used in PET decay by positron emission (β+-decay). In the decaying nuclide, a 

proton is converted to a neutron emitting a positron β+ simultaneously (McQuade et al., 2005). 

The positron, being the counter particle to the electron, will almost instantaneously annihilate 

with an electron producing energy in the form of two gamma photons (511 keV each) as shown in 

equation 1. The two photons will travel in parallel but in opposite direction. The photons 

penetrating the tissue are detected by a PET-camera, gamma-detectors organised in a circular 

array around the body (Le Bars, 2006). Photons registered simultaneously by two opposite 

detectors within a few nanoseconds will be recorded as an event, and make up a line of response 

(LOR) shown in Figure 1 (Philip W. Miller et al., 2008). Scattered photons that reach only one of 

the detectors will be rejected (Phelps et al., 1975). When sufficient events are collected, data can 

be processed to give information on distribution and quantification of the regional concentration 

of the tracer.  

 

(1) ++→ + β1
A

1-ZN
A
Z Y N N  

(2)     keV) (511   γ2  -e  β ×→++  

Equation 1. General representation of a positron decaying nuclide (1) and annihilation of positron and an 

electron (2). 
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Figure 1. Schematic presentation of the principle of PET with the positron emission and annihilation event 

on top (a)  and detection by a PET detector surrounding the patient at the bottom (b). (Source 

physicsworld.com) 

 

The radionuclides normally used in PET are short lived and can be produced in cyclotrons 

(particle accelerators) by nuclear reactions by protons or deuterons with high kinetic energy 

(Papash & Alenitsky, 2008). The positron emitters 11C, 13N, 15O and 18F are some examples of 

frequently used radionuclides in PET (P. W. Miller, 2009). As can be deciphered from Table 1, 

the positron emitted from the different nuclides have maximum energies (Emax), implying that the 

positron will travel certain distances before annihilation. Thus, the theoretical imaging resolution 

obtainable will vary depending on the radionuclide in use. 

 
Table 1. Some physical properties of common positron emitters used in PET. 

Radionuclide 

Half-life 

(min) Emax (MeV) 

Max range in 

water (mm) 
18F 109.8 0.64 2 
11C 20.4 0.97 4 
13N 9.96 1.20 5 
15O 2.04 1.74 8 
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The radionuclides 11C, 13N and 15O are particularly useful as they can be incorporated into a 

molecule without altering the pharmacological properties of the original ligand (Gee, 2006; 

Palmer et al., 1977). However, the application of these nuclides is restricted due to the short half-

life, making extended synthesis and long imaging protocols impossible (Varagnolo et al., 2000). 

In recent time, other PET-nuclides have been gaining increasing interest, in particular 68Ga (t1/2 = 

68 min) that can be obtained from a generator system. However, requiring a chelator, the use of 
68Ga is restricted to biomolecules such as large peptides or proteins, antibodies, aptamers and 

others where a large modification of the biomolecule is tolerated without perturbing its 

pharmacological properties (Fani et al., 2008). 

The radionuclide used in this thesis is 18F because of its relatively long half-life, widespread use 

and established production methods (Guillaume et al., 1991). 

 

1.2 Application of PET 

The areas of medical PET applications are numerous. It is the most advanced technology 

currently available for studying in vivo molecular interactions in terms of distribution, 

pharmacokinetics and pharmacodynamics (Frederic Dolle et al., 2008). The ability to measure 

changes in concentration of a radiolabelled pharmaceutical non-invasively over time in different 

organs, being healthy or pathological states, is indeed a powerful technique. Assessing parameters 

such as blood flow, metabolic energy consumption and receptor distribution and density are some 

of the areas often studied with PET. The field of oncology is possibly the medical discipline 

benefitting most from PET, particularly in routine clinical use (Mawlawi & Townsend, 2009).   

Besides clinical advantages and basic science, PET is increasingly being used for drug 

development. The major cause for the failures of new drugs is inappropriate pharmakodynamics 

(Huisinga et al., 2006). 

Studies using PET on drug pharmakodynamics and -kinetics, can help speed up the process of 

drug development by sieving out unwanted candidates at an early time point (Cunningham et al., 

2005; Fowler et al., 1999). The injected dose of a PET radiopharmaceutical in terms of mass is 

very small due to the high specific activity. The risk of the drug provoking any pharmacological 

or toxicological effects are minuscule and it is therefore possible and safe to perform human PET 

studies early in the screening process (Vaalburg et al., 1999).  
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1.3 Characteristics and production of [18F]fluorine 

The report on the first production of fluorine-18 originates from 1936 and today more than 20 

nuclear reactions are known as production pathways (Schubiger, 2007; Snell, 1937). The success 

of [18F]fluorine as a PET radionuclide are due to several distinct properties and causes. Fluorine-

18 can be produced in high yields, even with low energy cyclotrons (< 16 MeV) (Cai et al., 

2008). The half-life of 109.8 allows extended synthesis times and multi-step reactions along with 

extended PET studies of slow biochemical processes (Ferrieri, 2003). The radionuclide has a low 

β+ -energy (0.64 MeV) which allows high resolution images and less radiation burden to patients 

(Kilbourn et al., 1987). Also, fluorine-18 displays a simple decay for 97% positron emission and 

3% electron capture (De Kleijn, 1977). Furthermore, a relatively long half-life makes 

transportation to off-site facilities feasible. Fluorine-18 can be produced in most cyclotrons by the 
18O(p,n)18F reaction by bombardment of 18O-enriched water with protons (Solin et al., 1988). The 

fluorine-18 is by this method obtained as an aqueous solution in the form of nca [18F]fluoride in 

high yields and high specific activity (typically above 100 GBq/µmol) (Elsinga, 2002). 18-

Fluorine can also be produced as [18F]F2 from 20Ne or 18O gas targets. A major problem, however, 

is adsorption of fluorine-18 on the target walls, thus elemental fluorine is added to recover the 

product while lowering the SA of the 18-fluorine (Schubiger, 2007). Therefore, the method of 

choice for introduction 18F-fluoride into a molecule is in the form of nca [18F]fluoride and hence 

[18F]F2 is only utilised in some reactions where high SA is not required or the chemistry omits the 

use of [18F]fluoride (Fuechtner et al., 2008). Only nca 18-fluoride was used in studies of this 

thesis. 

1.4 Chemistry with the [18F]fluoride ion 

After bombardment of 18O-enriched water, [18F]fluoride is in an aqueous solution which makes it 

poorly reactive due to the high degree and strength of hydration (Clark, 1980). Therefore, the first 

step is to remove the major bulk of water. Commonly, [18F]fluoride is adsorbed onto an ion 

exchange resin, allowing recovery of expensive 18O-enriched water. The [18F]fluoride is then 

eluted into a reaction vessel with an aqueous weak base followed by azeotropic removal of water 

with MeCN with addition of a suitable PTC during the process (Block et al., 1987; Palmer et al., 

1977). The azeotropic step is repeated 2-3 times and ensures a high degree of “dry” fluoride. 

However, the truly “naked” fluoride ion is never obtained. The removal of each water molecule of 

hydration is successively more difficult, and hence trace [18F]fluoride ion will be hydrated to at 
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least some extent by very small traces of residual water. Reduction in the degree of hydration will 

correspondingly increase nucleophilicity. In general, a robust and reproducible drying process is 

required to ensure [18F]fluoride ion with adequate nucleophilicity for difficult reactions (e.g., 

aromatic nucleophilic substitution reactions), whereas a less strict drying regime may be tolerated 

for other reactions (e.g., aliphatic nucleophilic substitution reactions) (Cai et al., 2008). After 

drying, the precursor dissolved in an organic aprotic solvent is added to the fluoride for reaction. 

Normally, the precursor should not be a source of protons themselves. Recently, reactions with 

nca 18F-fluoride in protic solvents have been reported (t-BuOH), in contrast to the classical 

thinking that all reactions with the fluoride ion must be conducted in aprotic solvents (Kim et al., 

2006). The two major reactions with the fluoride ion are the aliphatic nucleophilic substitution 

and nucleophilic aromatic substitution. For the introduction of 18-fluoride in to a molecule, 

“classical” leaving groups (LG) well-known from organic chemistry are regularly employed. A 

variety of sulfonate esters are used to convert primary and secondary alcohols to excellent LG 

(Bolton, 2002). Furthermore, halogens are also often used, in particular iodine, bromine and 

chloride. For aromatic substitutions the trimethylammonium group, nitro and chloride are 

attractive candidates as leaving groups and to a lesser extent bromine (Angelini et al., 1985; F 

Dolle, 2005). Conveniently, the trimethylammonium precursors being charged have very different 

chromatographic properties than its fluorinated product and can offer a very straight forward 

purification of the reaction mixture on a solid-phase cartridge system (Haka et al., 1989; Poethko 

et al., 2004). It’s worthy of note that homo-aromatic substitutions normally require at least one 

electron-withdrawing group to achieve good incorporation yields of fluoride, as electron-rich 

arenes are poorly activated (F Dolle, 2005). Heteroarenes, especially pyridines have also become 

attractive systems for introduction of fluoride in the last decade, and will be discussed more in 

depth in chapter 3.4. 

One example of a tracer produced by a substitution reaction is [18F]2-fluoro-2-deoxy-D-glucose 

(FDG) a highly utilised tracer to study glucose metabolism in a number of indications (Adam, 

2002; Tewson, 1989). In this thesis the commercially available TracerLab (GE Healthcare) was 

used in all radiosyntheses and a standard two-cycle azeotropic drying step was used, giving for 

the major part reproducible results (see article I-IV for details). 
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1.5 18F-Prosthetic groups 

Far from all molecules can tolerate the harsh conditions for the direct introduction of 

[18F]fluoride. For small, simple organic molecules it may be sufficient by masking functional 

groups that may interfere with the fluoride labelling (Okarvi, 2001). Examples are the FDG 

precursor, mannose triflate, where the hydroxyl functions of the sugar are protected by means of 

acetyl esters (Hamacher et al., 1986). Other examples are the BOC-protection of amines and 

trityl-protection of thiols for a large spectrum of small organic 18F-tracers (De Bruin et al., 2005; 

Glaser et al., 2004). However, for more complex biomolecules such as peptides, proteins and 

antibodies containing a vast variety of functional groups and acidic protons, this approach is 

normally not feasible. There are some reports of direct incorporation of [18F]fluoride into a 

peptide such as bombesin, but a broader application to a variety of peptides using this 

methodology and further in vivo studies are yet to be reported (Mu, 2009). Also, direct labelling 

of peptides with electrophilic carrier added 18F-fluorination is shown unsuitable for use in 

receptor studies presumably due to a very low SA (32.8 GBq/mmol) (Ogawa et al., 2003). 

For these reasons, peptide and protein labelling with nca [18F]fluoride is accomplished by means 

of prosthetic groups, also referred to as bifunctional labelling agents. In this indirect 

methodology, 18-fluoride is introduced into a functionalised compound (the prosthetic group) and 

coupled to the macromolecule of choice under mild conditions. Currently, a wide spectrum of 18F-

prosthetic groups utilising different sets of chemistries are available (Figure 2). 

 

             
Figure 2. Examples of published [18F]fluoride based prosthetic groups exploiting different chemistries. 

[18F]SFB = N-succinimidyl 4-[18F]fluorobenzoate, 4-[18F]FBA = 4-[18F]fluorobenzaldehyde, [18F]FPyBrA 

= 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide, [18F]FPyME =1-[3-(2-

[18F]fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione. 
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Among the first approaches investigated for labelling of peptides was the formation of prosthetic 

groups based on active esters such as N-hydroxysuccinimide and 4-nitrophenyl (Vaidyanathan & 

Zalutsky, 1992). In particular, N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) has been used 

frequently for labelling of peptides and antibodies with free amines in good yields (J. Li et al., 

2007; Marik & Sutcliffe, 2007; Neumaier et al., 2008; Tang et al., 2008). However, the synthesis 

of [18F]SFB is quite tedious and requires 2-3 three steps (Wuest, Koehler et al., 2009). Active 

esters are not well suited for labelling of macromolecules with more than one free and equally 

reactive amine groups, leading to potentially a multi-fluorinated peptide and loss of or reduced 

biological activity (Gill et al., 2009; Thonon et al., 2009). Alkylating prosthetic groups, such as 

[18F]FPyBrA have been mostly been used to label oligonucleotides and some peptides (Kilbourn 

et al., 1987; Koslowsky et al., 2008; von Guggenberg et al., 2009). At current, this approach has 

not gained much attention compared to other methodologies. Chemoselective prosthetic groups 

are desirable as they allow the use of unprotected peptide- and oligonucleotide-precursors and 

thus reduce the number of steps for the conjugation to one. This renders the synthesis less 

complicated and reduces the overall synthesis time (Bruus-Jensen et al., 2006). The free thiol (or 

sulfhydryl) function is present only in cysteine residues and is not very common in most peptides 

and proteins. Thiol-reactive agents have therefore been used to modify peptides and proteins at 

specific sites, providing a means of high regioselectivity in contrast to the carboxylate- and 

amine-reactive reagents (Berndt et al., 2007). One example is [18F]FPyME, which have been used 

to radiolabel peptides and proteins in good yields (De Bruin et al., 2005). However, all methods 

based on sulfhydryl-reactive prosthetic groups involve multi-step preparations (two to four) of the 

prosthetic group, making them inappropriate for routine synthesis in a clinical setting. In view of 

the fluorination of peptides described above, there is still need of radiolabelling strategies for 

faster and simpler production of 18F-peptide tracers. Besides direct labelling which is so far not 

possible, a 1+1-step labelling method is the best approach. Such an approach involves a one-step 

fluorination of the prosthetic group which can be conjugated directly to an unprotected peptide in 

a site-selective manner under mild conditions. Prosthetic groups fulfilling this requirement are 

e.g. the chemoselective formation of an oxime or hydrazone bound between 4-

[18F]fluorobenzaldehyde (4-[18F]FBA) and a peptide functionalised with an aminooxy- or a 

hydrazino group (Bruus-Jensen et al., 2006; Poethko et al., 2004; Schottelius et al., 2004). This 

approach has been shown to produce 18F-peptides in up to 40% overall yield and an RGD-peptide 

based on this methodology is currently under clinical development (Morrison et al., 2009). The 

aminooxy being highly reactive towards any aldehyde or ketone have the drawback that it needs 
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careful handling in its unprotected form to avoid side-reactions. Recently, also selective oxime 

formation between aminooxy-modified peptides and the open aldehyde form of 18F-FDG have 

been demonstrated, expanding the scope of the aminooxy functionality (Namavari et al., 2009; 

Wuest, Hultsch et al., 2009). However, major drawbacks are high temperatures and the excess 

glucose impurities in a clinical FDG formulation which led to disappointing conjugation yields.  

Yet another promising approach is the reaction of terminal alkynes with azides catalysed with 

copper(I), the ´click´ reaction or 1,3-dipolar cycloadditon (Glaser & Aarstad, 2007; Marik & 

Sutcliffe, 2006; Vaidyanathan et al., 2009). The merits of the reaction are in particular high 

chemoselectivity, regiospecificity, excellent yields as well as mild reaction conditions (Glaser & 

Robins, 2009). This approach also offer a 1+1-step labelling and certainly show promise for 

labelling of peptides with 18F although the use of copper as catalyst may be an issue for 

pharmaceutical productions.  

1.6 18F-Peptides as tracers 

Peptides are composed of relative simple components, the amino acids. In contrast to proteins 

they generally do not possess a well-defined three-dimensional (tertiary) structure and are much 

smaller in size (up to 10.000 Da) (Blok et al., 1999). Also essential is the difference in production 

methods, small peptides can easily be synthesised chemically whereas proteins and antibodies 

often have to be derived from a biological source such as DNA-recombinant techniques. Using 

e.g. solid-phase based Fmoc-chemistry relatively large peptides (20-30 amino acids) can be 

synthesised in a short time (Indrevoll et al., 2006). Compared to antibodies and proteins, small 

peptides distribute more uniformly and penetrate tissues more readily (de Jong et al., 2004). 

Furthermore, peptides are generally excreted rapidly from the systemic circulation which is an 

important characteristic of a useful tracer for establishing a target to non-target signal (Tweedle, 

2009). However, too rapid metabolism and excretion can result in a peptide tracer that cannot 

accumulate on the target site. Peptides with a short plasma half-life can often be modified with 

unnatural amino acids or other chemical modification e.g. amidation of the C-terminal giving 

them more resistance to enzymatic destruction. Lipophilic peptides tend to show higher 

hepatobiliary excretion as opposed to hydrophilic peptides that often have predominate renal 

clearance (Lundqvist & Tolmachev, 2002). These are properties that in most cases can be 

modified with pharmacokinetic modifiers (PKMs) without perturbing the biological activity of 

the peptide (Haubner & Decristoforo, 2009). Because of the lack of a tertiary structure, small 

peptides are less susceptible to loss of integrity through labelling conditions and are less 
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immunogenic than proteins. However, in some cases the binding affinity for the target can be 

reduced due to the lack of a well-defined tertiary structure as compared to the native peptide or 

the intact antibody. Still peptides offer the advantage to be ‘‘as large as necessary, and as small as 

possible” (Schottelius & Wester, 2009). 

As peptides have become increasingly used as agents for therapeutic applications, 18F-peptide 

tracers may be used for bridging imaging with therapeutic approaches (Edwards et al., 1999; 

Schubiger, 2007). Amongst the 18F-radiolabelled peptides for PET being extensively studied in 

recent times are the RGD peptides for αvβ3 integrin imaging and octreotide analouges for 

detection of somatostatin receptors, both for visualisation of solid tumours (Dijkgraaf et al., 2009; 

H. J. Wester et al., 2003).  

1.7 Automation and PET 

Conventional manual methods for the synthesis of radiopharmaceuticals using high levels of 

radioactivity would certainly subject the personnel performing the synthesis to high radiation 

exposure. Routine manual high activity synthesis would soon lead to unacceptable accumulation 

of absorbed dose and conflict with the ALARA principle (As low as reasonably achievable) 

(Sharma et al., 2006). In particular for the PET isotopes such as 11C, 13N, 15O and 18F the amount 

of radioactivity at start of synthesis requires high levels due to the fast decaying nuclides to give 

sufficient radiolabelled product for PET scans.  For a synthesis of 18F-FDG, it is not uncommon to 

produce 300 GBq of [18F]fluoride, which gives around 200 GBq of 18F-FDG (Fawdry, 2007). To 

reduce the exposure burden to personnel, automatic modules have been designed. These modules 

are placed into so-called hot cells, thick lead compartments shielding the personnel from 

radiation. Typically the modules are controlled by a remote computer with pre-programmed 

software, allowing the technologist to operate them. Currently, most commercial modules are 

intended for 18F-FDG and other relatively simple PET tracers. For the more complicated 

production of 18F-peptides with a two-step synthesis and final HPLC-purification, no dedicated 

module is available for routine production. In this thesis the TracerLab FxFN was used for 

radiolabelling. Although flexible in its nature, fully-automated synthesis of 18F-peptides is 

difficult to achieve using this module (Speranza et al., 2009). In recent years, modules allowing 

multi-step synthesis are becoming increasingly available, at least for academic research, allowing 

automated production of more complex tracers. As it was for 18F-FDG, to further move 18F-

peptides from academia to the clinic, the future lies in automation. 
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2. AIMS AND SCOPE 

There are many reports of the application with the vast varieties of 18F-prostetic groups for 

radiolabelling of peptides and biomolecules. However, they all have their limitations and 

advantages (Wuest et al., 2008). One prosthetic group is not likely to be suitable for the labelling 

of the whole diversity of biomolecules in use.  A further extension of the 18F-prosthetic group 

“tool-box” in PET is still warranted. 

The overall aim of this thesis was to develop new prosthetic groups for labelling of peptide and 

other biomolecules with nca [18F]fluorine for PET applications. The PET-radionuclide fluorine-18 

was used because of its relatively long half-life, high yielding production method and favourable 

nuclide characteristics. On the basis of the reported site-selective properties of the N-

methylaminooxy functionality under mild acidic conditions, it was decided to use this chemistry 

as the basis of development of new prosthetic groups. Furthermore, during the time period of the 

work, pyridine systems caught our interest and led to the investigation of the possibility of direct 

labelling of active esters as more rapid and simpler synthesis of these types of 18F-prosthetic 

groups. Important consideration parameters for the prosthetic groups in this thesis are; labelling 

yield, simple synthesis, amenability to automation and site-selectivity. The applicability of the 

synthesised prosthetic groups in conjunction with relevant peptides in vitro and in vivo was 

assessed.  

 

 The study is divided into the following milestones: 

 

• Synthesis of a prosthetic group with the N-methylaminooxy functionality (paper I) 

• Find a suitable functionality covalently linked to a peptide that reacts with the 18F-N-

methylaminooxy-prosthetic group in a site-selective manner in a time frame acceptable for 

PET-radiopharmaceutical production (paper I and II) 

• Establish a radiosynthesis and purification process (paper I and II) 

• Synthesis of a prosthetic group allowing for the direct labelling of active esters (paper III) 

• Study the stability of the radiolabelled conjugates in relevant solutions using a biological 

active peptide (paper III-IV) 

• Study in vitro and in vivo properties and conduct biodistribution studies with the 

radiolabelled conjugates (paper III-IV) 
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3. RESULTS AND DISCUSSION 

The vast majority of 18F-peptide tracers currently under investigation are aimed at tumour 

imaging. Examples are αvβ3 specific ligands for detection of neovascularisation, somatostatin 

analogues, VIP (vasoactive intestinal peptide) and bombesin (Cheng et al., 2007; Schottelius et 

al., 2009; Zhang et al., 2006). 

Despite the promising characteristics for peptides labelled with 18F, such as high receptor affinity, 

rapid excretion and a vast choice of target receptors, these types of 18F-tracers have not yet 

achieved a clinical breakthrough (H.-J. Wester et al., 2004). Reasons for this may be the success 

of 18F-FDG as an efficient tracer for detecting and staging tumour, ability to monitor therapy 

response along with its high yielding automated production process. However, 18F-FDG has its 

shortcomings and complementary tracers are needed.  For example, in endocrine tumours 

radiolabelled peptides have shown to be superior to 18F-FDG (Gotthardt et al., 2006). In order to 

make 18F-peptides more attractive for clinical use, their production methods need to be simplified 

and give higher yields. In this thesis, two approaches have been investigated for this purpose. The 

first is based on the site-selective addition of an 18F-N-methylaminooxy prosthetic group to 

unprotected peptides, offering the possibility for labelling of complex unprotected peptides with 
18F. The second, though lacking the chemoselectivity, is an approach for the synthesis of active 

ester 18F-prosthetic groups directly in one-step, allowing a less complicated synthesis of the 18F-

peptides suitable for use with this type of 18F-bifunctional labelling agent. 

 

Each of the papers (I-IV) and supporting information can be referred to for more elaborate 

information for synthesis, structures, methods and analytical procedures.  

3.1 PAPER I 

3.1.1 The N-methylaminooxy functionality 
 
N-alkylaminooxy containing amino acids have proved useful for the post-modification of 

unprotected peptides with reducing sugars, alkylating agents and active esters (Bark et al., 2000; 

Carrasco & Brown, 2003; Carrasco et al., 2002; Carrasco et al., 2006). This is attributed to the 

fact that they remain unprotonated and nucleophilic in acidic aqueous solutions (pH 4-5), where 

other functional groups in peptides are unreactive (except for cysteine).  In contrast to the more 

well-known aminooxy functionality already used for labelling peptides site-specifically with 18F 
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through oxime-formation, the N-alkylaminooxy is unreactive towards aldehydes and ketones 

although they share the property of being nucelophilic in mild acidic aqueous solutions. 

Furthermore, by virtue of being extremely reactive towards all aldehydes and ketones, the free 

aminooxy-group must be handled carefully and the group may require a Boc-protective group 

during prolonged storage (Hultsch et al., 2009). 

In light of this, it was of interest to investigate if this chemistry could be applied for the 

chemoselective labelling of peptides with 18F.  

 

3.1.2 Synthesis of the 18F-N-metylaminooxy prosthetic groups 

Starting from 4-bromo-1-butanol the precursor 1 was synthesised in four steps in 3% overall yield 

and good purity (>98%). The tosyl leaving group was used as it is relative stable and gives a good 

UV signal around 250 nm. The nitrogen atom was BOC-protected (Figure 3). 

 

 
Figure 3. Structure of the precursor synthesised, the fluorinated intermediates and the reactive 18F-

prosthetic groups. 

 

Reaction of precursor 1 with Kryptofix 222/KF (2 eq.) in acetonitrile at 70°C gave the desired 

fluorinated compound 2 in over 50% yield, further treatment with TFA cleaved the Boc-group 

quantitatively giving the final reactive species 3. Further radioactive experiments with precursor 1 

gave good incorporation yields with 18F in acetonitrile using Kryptofix 222 as PTC. However, 

after removal of the Boc-group, incubation of 3 in acetate buffer pH 5 at 70°C proved to produce 

a radioactive side-product eluting in the void volume as analysed by radio-HPLC. This peak was 

attributed to the release of [18F]fluoride, formed through the cyclisation of the prosthetic group 

into a favourable six-membered ring. These findings were somewhat surprising as fluorine is 
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regarded as a poor leaving group in aliphatic substitution reactions. Still, the strong nucleophilic 

properties of the N-methylaminooxy and the favourable six-membered ring conformation proved 

sufficient to displace fluoride. As a consequence, further investigations with 3 were not 

conducted. To circumvent this problem, the precursor 4 was synthesised starting from a 

diethylene glycol. In a similar manner as 1, precursor 4 was synthesised in 19 % overall yield 

based on diethylene glycol. Fluorination with Kryptofix 222/KF (2 eq.) in acetonitrile at 70°C 

gave the desired fluorinated compound 5 in over 50% yield, further treatment with TFA cleaved 

off the Boc-group quantitatively giving the final reactive species O-(2-(2-

[18F]fluoroethoxy)ethyl)-N-methylhydroxylamine (6). Radiolabelling of precursor 4 with 18F in 

acetonitrile using Kryptofix 222 gave routinely 60-80% yields and in contrast to 3 the reactive 

species 6 was not prone to cyclisation in acetate buffer. 

 

3.1.3 Reaction of the 18F-N-metylaminooxy prosthetic groups with peptides 

Next the strategy was to screen for reactive electrophiles that could be functionalised to a peptide 

forming a covalent bond to the prosthetic group, preferably with rapid conjugation kinetics. 

Amongst the groups screened were allylic, benzylic, α-carbonyl bromides and chlorides. Also 

investigated were maleimide, different sets of acrylates, nitrostyrene and a vinylsulfonamide. The 

reactive groups were linked to the N-terminal of the model peptide (Lys-Gly-Phe-Gly-Lys) as 

shown in Figure 4 and reactions with 6 were conducted in acetate buffer pH 5. The reaction 

mixtures were analysed by LC-MS. As predominately one product was expected from these 

reactions, additional peaks would indicate side-reactions from two free ε-amines and carboxyl 

presented in the peptide. 

 

 

 
Figure 4. Model peptide used in the study (R= alkyl halide or Michael acceptor) 
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From these investigations it was found that the alkyl halides reacted sluggishly along with less 

activated acrylates. The vinylsulfonamide gave a clean reaction product, but the reaction was 

rather slow. More promising were the maleimide and 4-(2-nitrovinyl)benzoyl-functionalized 

peptides giving clean reactions with one predominant product and relatively rapid kinetics. In 

particular the nitrostyrene proved to react rapidly, being converted to the desired conjugate in 

more than 90% yield in less than 10 min at 30°C, in accordance with previous reports (O'Neil et 

al., 2001). The maleimide required heating at 70°C for 1h to achieve acceptable yields. 

As a result of these findings, nitrostyrene and maleimide were selected for full radiochemical 

assessment. 

3.1.4 Radiosynthesis and pre-purification of the prosthetic group before conjugation 

The use of acetonitrile and K222/K2CO3 proved to give good incorporation yields (60-80%) of 
18F into the precursor as analysed by radio-TLC. Considering acetonitrile’s favourable properties 

such as low boiling point and low viscosity, it was concluded that there was no need to 

investigate additional solvents. A study of reactions times proved that the reaction reached a 

plateau within 5 min of reaction time, and further heating did not improve yields as shown in 

Figure 5. The incorporation yields found were comparable with other prosthetic groups using 

tosyl as leaving group (Glaser & Robins, 2009; Z.-B. Li et al., 2007). 

 

 
Figure 5. Incorporation yields of [18F]fluoride with precursor 4 (5 mg, 13µmol)in MeCN at 70 °C as 

function of time as analysed with radio-TLC (mean of three experiments for each time point). 
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A time-consuming and cumbersome HPLC purification step of the prosthetic group should be 

avoided. Most of the precursor 4 hydrolysed during radiolabelling to the corresponding alcohol 

that was more hydrophilic than the 18F-labelled compound. Therefore, investigation with non-

radioactive compounds using C18 and Oasis HLB Sep-Paks were conducted to see if this 

approach could be used to separate the alcohol from the fluorinated compound avoiding an HPLC 

step. This extensive hydrolysis could be explained by additional displacement of the tosylate by 

the oxygen in position 6 of the precursor (Mcmanus et al., 1990). In comparison, the alkyl 

precursor 1 did not display the same degree of hydrolysis. It turned out that the Oasis HLB 

cartridge, based on a poly(divinylbenzene-co-N-vinylpyrrolidone) polymer was most effective. 

Using 50 ml of 25-30% methanol in water the alcohol impurity could be eluted off the cartridge 

while retaining the fluorinated compound. A large volume of 50 ml had to be used as the alcohol 

eluted off the Sep-Pak in a broad band. Furthermore, the fluorinated compound could be eluted 

off in good purity with 1.5 ml acetonitrile. Applying this system in the radiochemistry process, 

the major bulk of produced alcohol was removed. After eluting off the 18F-Boc-protected 

prosthetic group 5, the protective group and organic solvents were removed by addition of 0.2 ml 

2 M HCl in diethyl ether and subsequent heating at 65°C under a stream of nitrogen gas and 

simultaneously applying vacuum. The total time of this procedure from start of synthesis was 40-

45 min. Figure 6 illustrates the recoveries of labelled 18F-product starting from 5 mg (13 µmol) 

precursor. As can been observed some radioactivity was lost during the evaporation step and was 

a step difficult to reproduce. However, over 50% (decay corrected) of the starting amount of 18-

fluoride was present in form of [18F]6 after deprotection and evaporation. For the conjugation 

experiments 3 mg (8 µmol) of precursor was used ensuring minimal carry-over of alcohol. This 

reduced the yield of [18F]6 to ≈ 40%.  

 



Novel [18F]fluorinated prosthetic groups 

16 

 
Figure 6. Example of typical radioactivity transfers in the synthesis of 6. TLC yield is incorporation yield 

analysed by radio-TLC of the crude reaction mixture. Oasis HLB column was activity remaining on column 

after treatment of 50 ml 25% aqueous methanol. In eluate is activity recovered from Oasis Sep-Pak after 

elution with 1.5 ml MeCN and last column represents activity remaining after Boc-deprotection and 

evaporation. The three columns on the right are decay corrected back to start of synthesis. 

 

3.1.5 Conjugation of the 18F-prosthetic group to model peptides  

In analogy with the non-radioactive experiments, conjugation of the prosthetic group [18F]6 to the 

two functionalised peptides were done in acetate buffer pH 5 (0.4 M). Using a relatively 

concentrated buffer ensured that some acid remaining from the evaporation step could be 

tolerated without pH in the buffer solution dropping to the point where the N-methylaminnoxy 

functionality became protonated and unreactive. A relatively high concentration of 5 mg (8 µmol) 

peptide in 0.8 ml buffer was routinely used. For the maleimide functionalised peptide 

incorporation yields of 64-80% of [18F]6 was achieved within 60 min reaction time at 70 °C. For 

the nitrostyrene functionalised peptide, incorporation yields in the range 80-89% could be 

obtained after only 5 min at 30 °C. Both of the 18F-labelled peptides could be purified using semi-

preparative HPLC yielding the products in high RCP (>99%) and in 9-12 % yield (non-corrected) 

based on [18F]fluoride. In particular, the nitrostyrene modified peptide was very well suited with 
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its fast reaction kinetics.  Yields are comparable with other frequently used methodologies for 

labelling peptides with 18F (Schubiger, 2007).  

It was later discovered that the nitrostyrene/N-methylaminooxy conjugate did not have the 

required stability for in vivo studies due to instability at physiological pH. This was not observed 

initially as 18F-peptides were purified with an acidic mobile phase containing 0.1 % TFA, where 

the conjugate was stable. In these initial studies, SA was not measured. But importantly, 

radioactive products could be efficiently removed from non-radioactive impurities using a HPLC 

column.   

 

3.2 PAPER II  

3.2.1 Site-specific addition to vinylsulfone modified peptide 

During the screening studies the sulfonamide moiety displayed a very clean reaction with the N-

methylaminooxy group yielding only one product. However the reaction kinetics were sluggish 

even at 70 °C. It was expected that a vinylsulfone group bearing a carbon atom adjacent to the 

sulfone as opposed to a nitrogen atom would be more reactive as Michael acceptors (Reddick et 

al., 2003). This would perhaps increase the reaction kinetics but still maintain the favourable 

properties of the reaction, such as a very clean conversion to the conjugate. With the same model 

peptide modified with vinylsulfonyl acetic acid reaction with the non-radioactive prosthetic group 

6, more than 90% of the peptide was converted to the conjugate within 60 min at 70 °C with few 

side products (Figure 7).  
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Figure 7. Reaction if the non-radioactive N-methylaminooxy prosthetic group with vinylsulfone modified 

model peptide in acetate buffer pH 5 at 70 °C Above chromatogram: Start of reaction. The major peak is 

starting peptide. Lower chromatogram: Above reaction after 60 min. The major peak is conjugate. 

 

In the following radioactive experiments with this system, conjugation yield dependence on 

peptide concentration and purification method of the prosthetic group were studied in more detail. 

The reaction of the prosthetic group with the vinylsulfonyl modified peptide is shown in Figure 8. 
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Figure 8. Reaction of [18F]6 with the vinysulfonyl modified model peptide. 

 

The Sep-Pak based purification step was compared with a HPLC purification step where all side-

products had been removed prior to conjugation giving a “non-carrier” labelled prosthetic group.   

In a chemometric design study the effect of the radioactivity level was investigated in conjunction 

with reaction time and peptide concentration. As typical for reaction of 18F-prosthetic groups with 

peptides, the conjugation yield was highly dependent on peptide concentration. Moreover, the 

results showed that HPLC purified prosthetic group gave only marginally better incorporation 

yields of the 18F-N-methylaminooxy prosthetic group as compared with the Sep-Pak approach, 

84% and 76%, respectively, using 7.5 mM peptide after 70 min. When 3 and 0.75 mM peptide 

were used, yields were reduced to 40 and 15 percent, respectively. 

This proved that the Sep-Pak approach indeed was capable of removing the major bulk of 

hydrolysed precursor. Spiking the HPLC purified reaction mixture with known amounts of 

alcohol by-product showed to a have a pronounced effect on conjugation yields, dropping to 

around 50 % with addition of 1µmol of alcohol. Higher concentrations of alcohol reduced the 

yield further. Varying the amount of [18F]fluoride 10-fold  had no effect on the percent 

incorporation yields and is expected as peptide concentration is several magnitudes of orders 

higher than [18F]fluoride, and the reaction follows a pseudo-first order kinetics (Philip W. Miller 

et al., 2008; Rengan et al., 1993). Interestingly, the sulfonyl conjugate showed a shorter retention 

time on a reversed phase HPLC column compared with the maleimide and nitrostyrene 

conjugates from paper I, which can be beneficial in terms of route of elimination for a tracer. 

More hydrophilic peptide tracers are known to show predominately renal clearance as opposed to 
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more hepatobiliary clearance for more hydrophobic tracers (Ogawa et al., 2003). A further 

improvement implemented in this part of the work was eluting and removal of the Boc-protected 
18F-labelled prosthetic group trapped on the Oasis Sep-Pak. Using a mixture of 1 ml 

dichloromethane (or acetonitrile) with 0.5 ml 2 M HCl in diethyl ether the labelled product was 

eluted back to the reaction vessel where evaporation and Boc-cleavage was effected. This 

procedure saved space in the Tracerlab FxFn system used and brought the set-up one step closer 

to automation, see Figure 9 for overview of the process.    

 

 
Figure 9. Schematic presentation of the radiosynhesis process for the 18F-peptide in paper II.  
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3.3 PAPER III 

3.3.1 Synthesis of cyclic RGD peptides 

In order to study the in vivo applicability of the new 18F-N-methylaminooxy prosthetic group 

([18F]6), an RGD peptide was used as model and studied in tumour xenograft bearing mice. The 

cyclicRGD peptide (NC100717) bearing a free lysine was first modified with two cysteic acids 

moieties ensuring good solubility of the peptide precursor in the relatively concentrated acetate 

buffer (0.4 M) used in the conjugation reaction. The cysteic acid moieties would also function as 

pharmacokinetics modifiers being unprotonated under physiological conditions, giving the 

peptide a very hydrophilic character that favoured renal excretion (Harris et al., 2006). 

Furthermore, the peptide was functionalised with 4-[(E)-2-Nitrovinyl]benzoic acid or 3-

vinylsulfonylpropionic acid as Michael type acceptors for reaction with [18F]6 as shown in Figure 

10. 

 

 
Figure 10. Structure of the RGD peptide precursor and conjugation product with [18F]6. 
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3.3.2 Integrin receptor-binding affinity 

The affinity for the αvβ3 integrin of unlabelled derivatives was determined via competitive 

binding assay with 125I-echistatin. Binding of 125I-echistatin to αvβ3 was competed by the two 

conjugates in a concentration-dependent manner. The Ki values were 0.8 nM for the nitrostyrene 

conjugate and 3.0 nM for the vinylsulfone. The low Ki affinities suggest that the modification of 

the peptide NC100717 had minimal effect on the receptor binding. The affinity for the 

nitrostyrene conjugate should be interpreted with care, since it was shown to be very labile at 

physiological pH. 

 

3.3.3 Radiosynthesis, log P and in vitro stability 

In the radiosynthesis process, 3 mg (8 µmol) of tosyl precursor and 2 mg (1.2 µmol) peptide 

precursor were used with the same Sep-Pak purification protocol as described above. Due to the 

fast kinetics of the nitrostyrene, 15 min at 40°C was the conjugation conditions for this system. 

The vinylsulfone was less reactive and required 1 h at 70°C to achieve sufficient yields to allow 

for biodistribution and microPET studies. Overall yields were 2-7% after formulation (decay 

corrected) with 2 h synthesis time for the nitrostyrene conjugate and 165 min for the vinysulfonyl 

conjugate, respectively. Non-radioactive reference compounds were used to generate a standard 

curve using HPLC and from this the SA was calculated after radio-HPLC analysis of the 

formulated 18F-conjugates. The specific activities for the preparations used in the biodistribution 

studies were in the range 40-50 GBq/µmol. The SA found is not in the high range compared to 

other methodologies, but still in a range acceptable for tumour imaging (Schirrmacher et al., 

2006). Furthermore, a fully automated radiosynthesis process would allow a faster production and 

the use of higher quantities of starting activity leading to higher SA. The starting quantities of 

[18F]fluoride used in the radiosynthesis for the biodistribution studies were 3-5 GBq. 

Stability of the two 18F-labelled RDG peptides was studied in mouse plasma. After formulation 

the 18F-productes were incubated at 37 °C over a period of two hours and aliquots were collected 

at 30 min, 1h and 2 h and analyzed by radio-HPLC. The nitrostyrene was highly unstable in the 

mouse plasma and also at physiological pH. A likely reason for this is the elevated acidity of the 

proton on the carbon adjacent to the nitro group, that becomes increasingly unprotonated at higher 

pH and hence the nitrogen of the N-methylaminooxy gets pushed out by the negative charge 

(Kresge, 1974).  
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3.3.4 MicroPET and biodistribution studies 

Dynamic microPET studies with this labile nitrostyrene conjugate was tested in three mice under 

the hypothesis that the conjugate would show increased stability in tumours, as they are known to 

be more acidic than surrounding tissue. These studies resulted in very poor images with no visual 

detection of tumour and further studies with the conjugate were not conducted.  

The vinylsulfone conjugate proved to be very stabile in the plasma with hardly any degradation 

detectable after 2 h. As the nitrostyrene proved unstable in mice plasma, log P experiments were 

conducted only for the vinylsulfone peptide. The octanol/water partition coefficient (log P) was 

measured to be -2.61±0.01, demonstrating a hydrophilic character. 

Initially, biodistribution and microPET was conducted in mice under anaesthesia (isoflurane) 

from time of injection to time of sacrifice. This protocol proved to give slow excretion rates 

resulting in very poor contrast and images, demonstrating the effect anaesthesia can have on 

tracer kinetics (Fueger et al., 2006). Under anaesthesia, nude mice are also more prone to 

hypothermia slowing down the circulation. As a result of these observations mice were injected 

with tracer without anaesthesia and allowed to remain so until sacrifice or microPET. The tumour 

model used was an osteosarcoma (OHS) derived from humane tissue (Fodstad et al., 1986). After 

injection of approximately 1 MBq of tracer into the tail vein, the mice were sacrificed after 5 min 

and 120 min (n= 3-4). In a similar experiment, mice were also co-injected with non radiolabelled 

cyclic RGD peptide (10 mg/kg) and sacrificed 120 min p.i. The organs were wet-weighted and 

counted in an automatic gamma counter from which the percent id/g in organs could be derived. 

In parallel with these studies, mice were injected with 4-7 MBq. Static PET images were acquired 

for 15 minutes in mice under isoflurane anaesthesia 105 min post injection. As above this was 

also performed with co-administration of 10 mg/kg cyclic RGD peptide.  

Biodistribution studies show initial high uptake of the 18F-vinylsulfonyl labelled peptide in 

kidneys (14 % ID/g), liver (6.5 % ID/g) and lungs (6 % ID/g) 5 min p.i. which all decreased with 

time. Predominantly renal clearance resulted in low muscle and blood values 120 min post 

injection, 0.68 and 0.18 % ID/g, respectively. The initial activity accumulation in the 

osteosarcoma mass was between 6.5 and 4 % ID/g 5 min p.i., decreasing to about 3.5% ID/g 120 

min p.i. At 120 min p.i., most organs showed lower activity uptake than tumour. Liver, gut and 

kidneys revealed a similar activity concentration as the tumour. Low activity accumulation in the 

bone suggested little or no defluorination in vivo. Altogether, this translated into high tumour to 

background ratios [e.g., tumour:blood, 19.0  tumour:muscle: 5.0]. Co-injection of the 

osteosarcoma bearing mice with 10 mg/kg of the αvβ3 -selective peptide NC100717 reduced the 
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tumor:blood ratio at 120 min p.i. from 19 to 5 and the tumour:muscle ratio from 5 to 3 suggesting 

that the uptake in tumour is αvβ3 mediated. In comparison with other studies of 18F-labelled RGD 

peptides in mice bearing OHS xenografts, such as 18F-galacto-RGD, considered a “gold standard” 

amongst 18F-RGD tracers (Schottelius et al., 2009), the 18F-vinylsulfonyl demonstrated very 

similar tumour to organ ratios as 18F-galacto-RGD shown in Figure 11. Radioactivities in the 

blood were slightly higher after 120 min with the vinylsulfonyl-RGD compared to 18F-galacto-

RGD (0.18 vs. 0.13) and may explain to some degree the higher activity levels in blood rich 

organs. This may be attributed to the lower log P of 18F-galacto-RGD than the 18F-peptide studied 

in this thesis, - 3.17 and – 2.61, respectively (Haubner et al., 2004). 

 

 
Figure 11. Comparison of the tumour to organ ratios between the 18F-vinylsulfone-RGD studied in this 

thesis and 18F-galacto-RGD 120 min p.i. The 18F-galacto-RGD data are also derived from OHS bearing 

mice (Haubner et al., 2001). 

 

The image (Figure 12) of an OHS bearing mouse obtained by the animal scanner demonstrates 

the high tumour to background ratio found in the biodistribution studies and allowed clear 

visualisation of the tumour. In contrast, the same experiment using a mouse with co-injected 
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cyclic RGD peptide showed no increased uptake in tumour compared to background. These 

experiments show that the prosthetic group [18F]6 could be useful for labelling of peptides 

functionalised with a vinylsulfone moiety with 18F for use in PET. The modification of the RGD 

peptide with the cysteic acids may also be beneficial as PKMs for other 18F-labelled peptides as it 

increases the hydrophilicity and leads predominate renal clearance (Blok et al., 1999). 

 

 
Figure  12. Coronal (left), transaxial (upper right) and sagittal (lower right) microPET images (15 min 

static single frame) beginning after 105 min of a mouse bearing a s.c. human OHS tumour injected with 5.2 

MBq 18F-peptide. K = kidneys Bl = bladder. White arrow indicate tumour. 

 

 

3.4 PAPER IV   

3.4.1 Active esters in PET  

18F-labelled active esters is a widely used and efficient method for the incorporation of 18-

fluorine into peptides and proteins. The synthesis of this type of 18F-prosthetic groups normally 

require two to three steps and often a HPLC purification step prior to conjugation, making the 

overall synthesis of the 18F-labelled peptides challenging to automate. Attempts to label active 

esters directly with 18F have so far resulted in poor yields, probably due to the harsh conditions 
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needed for the introduction of [18F]fluoride resulting in side-reactions and degradation of the ester 

(Johannsen et al., 1999; Lang & Eckelman, 1994). 

 

3.4.2 [18F]Fluropyridines 

Pyridine systems have been shown to be very susceptible for nucleophilic aromatic substitution 

with 18F in 2- and 4-positions with respect to the nitrogen in the pyridine system (Dolci et al., 

1999). These two positions are in particular activated due to the inductive and mesomeric 

withdrawal of electrons by the nitrogen, stabilising the negatively charged intermediate in a 

nucelophilic attack (Schubiger, 2007). For the 3-position the intermediate is not stabilised to the 

same extent, and for practical purposes substitution at this position can be considered not to 

occur. Due to this, fluorination of the 2- and 4-position has been the main focus of investigations 

the recent years (Abrahim et al., 2006; Inkster et al., 2008). Furthermore, compared to 

homoaromatic substitutions, nucelophilic substitution at the 2- and 4-positon of the pyridines do 

not require an additional electron-withdrawing demonstrating the elevated of pyridine systems 

(Frederic Dolle et al., 2008). From investigations with 6-chloronicotinic acid ethyl ester with 
18F/K222 complex in acetonitrile at 80 °C for 40 min that showed high incorporation yields 

(≈90%) as analysed by radio-HPLC. It would be of interest to see if an active ester applied to a 

similar system could be useful for direct labelling with 18F.  

 

3.4.3 Synthesis of precursors and the 6-[18F]fluronicotinic acid active esters 

Two precursors were attempted synthesised from 6-chloronictinic acid, both being active esters. 

The first step was esterification with N-hydroxysuccinimide (NHS) or tetraflurorphenol (TFP), 

both obtained in good yields. The trimethylammonium is an excellent leaving group in 

nucleophilic aromatic substitutions, and it was desirable to substitute the chloride with this group. 

Treating the 6-chloronicotinic acid esters in THF with trimethylamine expelled the chloride in a 

nucleophile aromatic substitution reaction giving the desired trimethylammonium precursor. In 

this step, the NHS-ester underwent extensive decomposition resulting in poor yields. As this was 

not the case for the TFP ester, further studies was only conducted with the TFP-precursor. As the 

trimethylammonium precursor was obtained as chloride salt and was poorly soluble in 

acetonitrile, it was reacted with trimetylsilyl triflate thus obtaining the precursor as the triflate 
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salt. Structure of the precursor 7 and is fluorinated product 8 (18F-Py-TFP) are shown in Figure 

13.    

   

 
Figure 13. Structure of precursor 7 and the 18F-fluorinated prosthetic group 8 (18F-Py-TFP) 

 

Non radioactive labelling experiments of the precursor 7 with KF/K222 in acetonitrile proved to 

give the fluorinated compound 8 in good yields still retaining the intact ester as analysed by NMR 

and LC-MS. Conjugation experiments with the fluorinated active ester 8 in phosphate buffer pH 9 

with a RGD peptide bearing a free lysine further demonstrated good acylating properties. The 

conjugate was formed in over 90% yield in less than 30 min at RT as analysed by LC-MS.  

Radiolabelling with [18F] of precursor 7 gave the target compound 8 in acetonitrile using 

K18F/K222 complex at room temperature, but in low yields. Further experiments with KHCO3 

and K222 improved yields (60-70 % from radio-TLC) but gave low recovery of 18F from the 

reaction vessel. The best conditions were found to be TBA-HCO3 as PTC in t-BuOH/acetonitrile 

(8:2) at 40°C for 10 min. This gave incorporation yields of 66.3±5.1 % as analysed with radio-

TLC (n =4). A radio-TLC of the crude reaction mixture using these conditions is shown in Figure 

14. 
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Figure 14. Radio-TLC of the crude reaction mixture using TBA-HCO3 in t-BuOH/MeCN at 40°C for 10 

min. Peak 1 is [18F]fluoride, 2 is[18F]8  (Ethyl acetate/n-hexane 1:1). 
 

3.4.4 Purification and peptide labelling 

After radiolabelling the 18F-fluorinated compound 8 could be purified on Oasis MCX Sep-Pak 

before conjugation to the peptide. Experiments with the Sep-Pak purified [18F]8 with an RGD 

peptide (NC100717) in phosphate buffer pH 9/DMSO/MeCN in different concentrations 

demonstrated the significance of peptide concentration on incorporation yields. Using 0.5 mg (0.4 

µmol in 1 ml) peptide over >90% conversion was achieved after 30 min at 40 °C, with 2 mg (2.4 

µmol) over 95% conversion was achieved after 10 min as analysed by radio-HPLC. Structure of 

peptide and conjugate are shown in Figure 15. 
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 Figure 15. Structure of the RGD peptide NC100717 and the conjugate formed with 8. 

 

In order to study the above process in a scenario more similar to a large scale production, a semi-

automated synthesis was established. With 2 mg of the above peptide and Sep-Pak purification of 

the 18F-labelled prosthetic group 8 isolated yields of 22±6 % (decay corrected) within 90 min 

could be achieved for the 18F-peptide conjugate. Radiochemical purity was >99% with the 

radiolabelled product easily separable from unreacted peptide and other impurities with reverse 

phased HPLC. 

This study demonstrates that direct labelling of an active ester system with [18F]fluoride is 

feasible in good yields. The TFP esters are known to be more resistant to hydrolysis than other 

esters such as pentafluorophenyl (PFP) and NHS, still being very reactive comparable with other 

activated esters. Moreover, the highly activated pyridines system allowed for reaction with 

[18F]fluoride at room temperature. This approach might serve as an alternative to [18F]SFB, 

commonly used for labelling of peptides and macromolecules. The rapid one-step synthesis and 

Sep-Pak purification of [18F]8 are properties that should render this system suitable for 

automation.  
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4. MAIN CONCLUSION 

The following conclusions are supported by the present project: 

 

• The N-methylaminooxy is suitable as functional group for the site-specific conjugation to 

unprotected peptides decorated with alkyl halides and Michael type acceptors in mild 

acidic aqueous environment. 

• 18F-prosthetic groups based on the N-methylaminooxy can be produced in good yields 

with nca [18F]fluoride and be conjugated to unprotected peptides in moderate yield 

• 18F- N-methylaminooxy prosthetic group conjugated to a vinysulfone modified RGD 

peptide could be produced in sufficient yields and acceptable specific activity for imaging 

of αvβ3 expression in xenograft bearing mice using microPET. 

• 18F- N-methylaminooxy prosthetic group displayed little or no defluoridation in vivo. 

• Direct labelling of active esters with nca [18F]fluoride in good yields is feasible using a 

highly activated pyridine system. 

 

5. FUTHER PERSPECTIVES 

A new methodology for labelling of peptides site-selectively with [18F]fluoride has been 

described in this project. Although the N-methylaminooxy prosthetic group is capable of site-

selective ligation with suitably modified peptides, such as vinylsulfone, the reaction kinetics are 

slow compared with the half-life of 18F-fluorine. To render it a truly attractive choice, other 

Michael acceptors allowing faster reactions should be sought, allowing faster kinetics and use of 

less peptide precursor. Another alternative could be to investigate catalyst for the reaction.  

The in vivo studies conducted with the 18F-N-methylaminooxy-RGD conjugate indicated little or 

no defluoridation in vivo, analysis of blood, liver, urine and faeces should be conducted to assess 

the in vivo stability further.  

An attractive methodology for the labelling of peptides with 18F-fluorine is through 18F-

bifunctional labelling agents based on acylation with activated carboxylic acid. In most instances 

this is done with prosthetic groups such as [18F]SFB. [18F]SFB requires 2-3 steps for its synthesis 

and frequently a HPLC step prior to conjugation to peptides. The 18F-Py-TFP prosthetic group 

allows for a simpler peptide labelling process with respect to [18F]SFB, and seems as an attractive 
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alternative. To elucidate its potential for use in vivo studies further investigations are a 

prerequisite. Studies with [18F]fluoropyridines have not to our knowledge indicated in vivo 

instability with these systems .  

For both of the above prosthetic groups, further implementation in to a fully automated system 

would be interesting for studies with higher radioactive levels.  
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